Extensions of modules for twisted current algebras
暂无分享,去创建一个
[1] E. Neher,et al. EXTENSIONS AND BLOCK DECOMPOSITIONS FOR FINITE-DIMENSIONAL REPRESENTATIONS OF EQUIVARIANT MAP ALGEBRAS , 2011, 1103.4367.
[2] Michael Lau. Representations of twisted current algebras , 2013, 1308.4188.
[3] A. Pianzola,et al. Maximal ideals and representations of twisted forms of algebras , 2013, 1308.4175.
[4] R. Kodera. Extensions between finite-dimensional simple modules over a generalized current Lie algebra , 2009, 0908.3738.
[5] Prasad Senesi. The block decomposition of finite-dimensional representations of twisted loop algebras , 2008, 0807.4116.
[6] J. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .
[7] D. Panyushev,et al. The PRV-formula for tensor product decompositions and its applications , 2008 .
[8] A. Pianzola,et al. Galois cohomology and forms of algebras over Laurent polynomial rings , 2007 .
[9] Nicolas Bourbaki,et al. Eléments de mathématique : algèbre , 2007 .
[10] Vyjayanthi Chari,et al. Spectral Characters of Finite-Dimensional Representations of Affine Algebras , 2003, math/0312199.
[11] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[12] E. Date,et al. The structure of quotients of the Onsager algebra by closed ideals *The structure of quotients of th , 1999, math/9911018.
[13] Miles Reid,et al. Commutative Ring Theory , 1989 .
[14] C. Weibel,et al. AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .