Toward variability management to tailor high dimensional index implementations

The increasing amount of complex data requires a solution to store and query these data efficiently. One possibility to speed-up various query types is the application of high dimensional index structures. In prior work, we introduced QuEval as platform to evaluate these indexes for user-defined use cases. Our design allows to easily extend QuEval with new index structure implementations. However, based on our experiences, we encountered severe challenges by tailoring index structure implementations to specific use cases. In particular, we face challenges to manage several similar implementation variants of the same index. In this paper, we consequently show benefits and drawbacks that emphasize the necessity to tailor index structure implementations with the help of a short evaluation study. Finally, we outline approaches for adequate variability management to address the aforementioned drawbacks.

[1]  Elke Achtert,et al.  ELKI: A Software System for Evaluation of Subspace Clustering Algorithms , 2008, SSDBM.

[2]  Veit Köppen,et al.  Persistence in Data Warehousing , 2012, 2012 Sixth International Conference on Research Challenges in Information Science (RCIS).

[3]  Krzysztof Czarnecki,et al.  Generative programming - methods, tools and applications , 2000 .

[4]  Hans-Joachim Lenz,et al.  Tree Based Indexes vs. Bitmap Indexes - a Performance Study , 1999, DMDW.

[5]  Sven Apel,et al.  Granularity in software product lines , 2008, 2008 ACM/IEEE 30th International Conference on Software Engineering.

[6]  Nick Roussopoulos,et al.  Materialized views and data warehouses , 1998, SGMD.

[7]  Thomas Thüm,et al.  Towards modular analysis of multi product lines , 2013, SPLC '13 Workshops.

[8]  Christian Böhm,et al.  Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases , 2001, CSUR.

[9]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[10]  A. Guttmma,et al.  R-trees: a dynamic index structure for spatial searching , 1984 .

[11]  Bogdan Raducanu,et al.  Micro adaptivity in Vectorwise , 2013, SIGMOD '13.

[12]  Gunter Saake,et al.  Challenges in Finding an Appropriate Multi-Dimensional Index Structure with Respect to Specific Use Cases , 2012, Grundlagen von Datenbanken.

[13]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[14]  Gunter Saake,et al.  Feature-Oriented Software Product Lines , 2013, Springer Berlin Heidelberg.

[15]  Hyoung-Joo Kim,et al.  An Efficient Technique for Nearest-Neighbor Query Processing on the SPY-TEC , 2003, IEEE Trans. Knowl. Data Eng..

[16]  Gunter Saake,et al.  Privacy-Aware Multidimensional Indexing , 2013, BTW.

[17]  Alon Itai,et al.  Maintenance of views , 1984, SIGMOD '84.

[18]  Alexander Zeier,et al.  In-Memory Data Management: Technology and Applications , 2012 .

[19]  Elmar Jürgens,et al.  Analyzing the Effect of Preprocessor Annotations on Code Clones , 2011, 2011 IEEE 11th International Working Conference on Source Code Analysis and Manipulation.

[20]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[21]  Gunter Saake,et al.  QuEval: Beyond high-dimensional indexing a la carte , 2013, Proc. VLDB Endow..

[22]  Yannis Sismanis,et al.  Dwarf: shrinking the PetaCube , 2002, SIGMOD '02.

[23]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[24]  Hans-Peter Kriegel,et al.  The pyramid-technique: towards breaking the curse of dimensionality , 1998, SIGMOD '98.

[25]  Gunter Saake,et al.  Toward Hardware-Sensitive Database Operations , 2014, EDBT.