Softening of antiferroelectric order in a novel PbZrO3-based solid solution for energy storage

[1]  Yan-ping Jiang,et al.  Giant Negative Electrocaloric Effect in Anti-Ferroelectric (Pb0.97La0.02)(Zr0.95Ti0.05)O3 Ceramics , 2019, ACS omega.

[2]  Z. Ye,et al.  Structure and properties of novel antiferroelectric PbHfO3-Pb(Mg1/2W1/2)O3 single crystals grown from high-temperature solution , 2019, Smart Materials and Structures.

[3]  Z. Ye,et al.  New Antiferroelectric Perovskite System with Ultrahigh Energy-Storage Performance at Low Electric Field , 2019, Chemistry of Materials.

[4]  Buwei Sun,et al.  Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range , 2019, Journal of Materials Chemistry C.

[5]  D. Khalyavin,et al.  Symmetry-determined antiferroelectricity in PbZrO3 , NaNbO3 , and PbHfO3 , 2019, Physical Review B.

[6]  T. Yang,et al.  Ultrahigh Energy‐Storage Density in Antiferroelectric Ceramics with Field‐Induced Multiphase Transitions , 2019, Advanced Functional Materials.

[7]  J. Zhai,et al.  Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications , 2018, Journal of Advanced Dielectrics.

[8]  M. Nguyen,et al.  Electric field-induced phase transition and energy storage performance of highly-textured PbZrO3 antiferroelectric films with a deposition temperature dependence , 2018, Journal of the European Ceramic Society.

[9]  Z. Ye,et al.  Synthesis, structure, and dielectric properties of a new binary antiferroelectric solid solution: (1− x )Pb(Mg 1/2 W 1/2 )O 3 – x PbHfO 3 , 2018, Journal of the American Ceramic Society.

[10]  Genshui Wang,et al.  Antiferroelectrics for Energy Storage Applications: a Review , 2018, Advanced Materials Technologies.

[11]  Hongbo Liu Origin of the intermediate phase in lead zirconate, PbZrO3 , 2018, Journal of the American Ceramic Society.

[12]  Guangzu Zhang,et al.  Dielectric materials for high-temperature capacitors , 2018 .

[13]  A. Tagantsev,et al.  Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure , 2017, Scientific Reports.

[14]  Fangping Zhuo,et al.  Structural phase transition, depolarization and enhanced pyroelectric properties of (Pb1−1.5xLax)(Zr0.66Sn0.23Ti0.11)O3 solid solution , 2016 .

[15]  Rahul Vaish,et al.  Anti-Ferroelectric Ceramics for High Energy Density Capacitors , 2015, Materials.

[16]  Z. Ye,et al.  Softening of antiferroelectricity in PbZrO3-Pb(Mn1/2W1/2)O3 complex perovskite solid solution , 2014 .

[17]  Xihong Hao,et al.  A comprehensive review on the progress of lead zirconate-based antiferroelectric materials , 2014 .

[18]  R. Guo,et al.  Phase transition behavior of Ba(Mg1/3Nb2/3)O3 modified PbZrO3 solid solution , 2014 .

[19]  Ting Wu,et al.  Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO–TiO2–SiO2 glass–ceramics addition , 2014 .

[20]  A. Tagantsev,et al.  The origin of antiferroelectricity in PbZrO3 , 2013, Nature Communications.

[21]  S. Niemcharoen,et al.  Phase Transition Behavior of the (1−x)PbZrO3−xBa(Al1/2Nb1/2)O3 Solid Solution , 2012 .

[22]  Qing-Ming Wang,et al.  Shift of morphotropic phase boundary in high-performance [111]-oriented epitaxial Pb (Zr, Ti) O3 thin films , 2012 .

[23]  X. Tan,et al.  The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics , 2011 .

[24]  N. Vittayakorn,et al.  Effect of BiAlO3 modification on the stability of antiferroelectric phase in PbZrO3 ceramics prepared by conventional solid state reaction , 2011 .

[25]  N. Vittayakorn,et al.  Dielectric properties and phase transition behaviors in (1−x)PbZrO3–xPb(Mg1/2W1/2)O3 ceramics , 2009 .

[26]  N. Vittayakorn,et al.  Effect of Pb(Zn1/3Nb2/3)O3 Additions on Phase Structure, Ferroelectric and Dielectric Properties of PbZrO3 Ceramics , 2009 .

[27]  X. Tan,et al.  High temperature phases in the 0.98PbZrO3–0.02Pb(Ni1/3Nb2/3)O3 ceramic , 2009 .

[28]  S. Alvarez,et al.  Distortions in octahedrally coordinated d0 transition metal oxides : A continuous symmetry measures approach , 2006 .

[29]  X. Tan,et al.  Electric-field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1−xSnx)1−yTiy]0.98O3 , 2005 .

[30]  I. Ardelean,et al.  STRUCTURAL AND DIELECTRIC STUDIES ON Pb(Mg0.5Mo0.5)O3 COMPOUND , 2004 .

[31]  T. Egami,et al.  Atomic Structure of PbZrO3 Determined by Pulsed Neutron Diffraction , 1998 .

[32]  M. Tyunina,et al.  Effects of structure ordering, structure defects and external conditions on properties of complex ferroelectric perovskites , 1998 .

[33]  Zhengkui Xu,et al.  Effects of quenched disorder on La-modified lead zirconate titanate: Long- and short-range ordered structurally incommensurate phases, and glassy polar clusters , 1998 .

[34]  D. Viehland,et al.  Phase stability and transformations in pure and lanthanum modified lead zirconate ceramics , 1995 .

[35]  N. Yasuda,et al.  PHASE TRANSITIONS IN THE PB(IN1/2NB1/2)O3-PBZRO3 SYSTEM , 1995 .

[36]  Zhengkui Xu,et al.  INCOMMENSURATION IN LA-MODIFIED ANTIFERROELECTRIC LEAD ZIRCONATE TITANATE CERAMICS , 1994 .

[37]  J. Dec,et al.  Structure and disorder in single‐crystal lead zirconate, PbZrO3 , 1993 .

[38]  Z. Ujma,et al.  Structure and electrical properties of PbZrO3 doped with Nb2O5 , 1991 .

[39]  V. Heine,et al.  Origin of Modulated Incommensurate Phases in Insulators , 1981 .

[40]  E. Sawaguchi,et al.  Lattice Distortion of PbZrO3 , 1979 .

[41]  G. Burns,et al.  Crystal Growth and Observation of the Ferroelectric Phase of PbZrO3 , 1972 .

[42]  V. Tennery High‐Temperature Phase Transitions in PbZrO3 , 1966 .

[43]  V. Tennery A Study of the Phase Transitions in PbZrO3 , 1965 .

[44]  E. Sawaguchi,et al.  Antiferroelectric Structure of Lead Zirconate , 1951 .

[45]  E. Sawaguchi,et al.  Dielectric Properties of Lead Zirconate , 1951 .

[46]  Yurong Wu,et al.  A comparative study on positive temperature coefficient effect of BaTiO3–K0.5Bi0.5TiO3 ceramics by conventional and microwave sintering , 2014 .

[47]  M. Timuçin,et al.  Structural, piezoelectric and dielectric properties of PSLZT–PMnN ceramics , 2013 .