Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations
暂无分享,去创建一个
[1] Eitan Tadmor,et al. Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .
[2] Gabriella Puppo,et al. High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..
[3] P. Arminjon,et al. Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace , 1995 .
[4] Bernd Einfeld. On Godunov-type methods for gas dynamics , 1988 .
[5] G. Russo,et al. NUMERICAL SOLUTION FOR HYDRODYNAMICAL MODELS OF SEMICONDUCTORS , 2000 .
[6] Vittorio Romano,et al. Extended Hydrodynamical Model of Carrier Transport in Semiconductors , 2000, SIAM J. Appl. Math..
[7] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[8] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[9] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[10] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[11] Sebastian Noelle,et al. A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-dimensional Compressible Euler Equations , 1999 .
[12] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[13] Raz Kupferman,et al. Simulation of Viscoelastic Fluids , 1998 .
[14] Gabriella Puppo,et al. Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..
[15] Raz Kupferman,et al. A Numerical Study of the Axisymmetric Couette-Taylor Problem Using a Fast High-Resolution Second-Order Central Scheme , 1998, SIAM J. Sci. Comput..
[16] Stanley Osher,et al. Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .
[17] P. Lions,et al. Two approximations of solutions of Hamilton-Jacobi equations , 1984 .
[18] Chi-Tien Lin,et al. High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[19] Gabriella Puppo,et al. A third order central WENO scheme for 2D conservation laws , 2000 .
[20] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[21] S. Osher,et al. On the convergence of difference approximations to scalar conservation laws , 1988 .
[22] Doron Levy,et al. A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..
[23] B. Engquist,et al. Multi-phase computations in geometrical optics , 1996 .
[24] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[25] Chi-Wang Shu. Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .
[26] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[27] M. Falcone,et al. Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .
[28] E. Tadmor,et al. Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .
[29] Eitan Tadmor,et al. New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .
[30] Knut-Andreas Lie,et al. Remarks On High-Resolution Non-Oscillatory Central Schemes For Multi-Dimensional Systems Of Conserva , 2000 .
[31] Chi-Tien Lin,et al. $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.
[32] Paul Arminjon,et al. A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids , 1998 .
[33] G. Russo,et al. Central WENO schemes for hyperbolic systems of conservation laws , 1999 .
[34] P. Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .
[35] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[36] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[37] Paul Arminjon,et al. Convergence of a Finite Volume Extension of the Nessyahu--Tadmor Scheme on Unstructured Grids for a Two-Dimensional Linear Hyperbolic Equation , 1999 .
[38] R. Abgrall. Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .
[39] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[40] E. Tadmor,et al. A fast, high resolution, second-order central scheme for incompressible flows. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[41] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[42] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[43] Kolumban Hutter,et al. Shock-capturing and front-tracking methods for granular avalanches , 2015, 1501.04756.
[44] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .
[45] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[46] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[47] B. Wendroff,et al. Approximate Riemann Solvers, Godunov Schemes and Contact Discontinuities , 2001 .
[48] IXu-Dong Liu,et al. Nonoscillatory High Order Accurate Self-similar Maximum Principle Satisfying Shock Capturing Schemes I , 1996 .
[49] Alexander Kurganov,et al. A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems , 2001, Numerische Mathematik.
[50] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .