Soil invertebrates and ecosystem services

Invertebrates play significant, but largely ignored, roles in the delivery of ecosystem services by soils at plot and landscape scales. They participate actively in the interactions that develop in soil among physical, chemical and biological processes. We show that soils have all the attributes of self-organized systems as proposed by Perry (Trends Ecol. Evol. 10 (1995) 241) and detail the scales at which invertebrates operate and the different kinds of ecosystem engineering that they develop. This comprehensive analysis of invertebrate activities shows that they may be the best possible indicators of soil quality. They should also be considered as a resource that needs to be properly managed to enhance ecosystem services provided by agro-ecosystems. © 2006 Published by Elsevier Masson SAS.

[1]  H. Setälä,et al.  Soil Fauna Increase Betula Pendula Growth: Laboratory Experiments With Coniferous Forest Floor , 1991 .

[2]  J. A. Veen,et al.  Habitable pore space and survival ofRhizobium leguminosarum biovartrifolii introduced into soil , 1990, Microbial Ecology.

[3]  I. Olejniczak,et al.  Response of soil micro- and mesofauna to diversity and quality of plant litter , 2006 .

[4]  J. Rossi Clusters in earthworm spatial distribution , 2003 .

[5]  P. Lavelle,et al.  Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique) , 1998, Biology and Fertility of Soils.

[6]  P. Lavelle,et al.  Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (glossoscolecidae, oligochaeta) , 1986 .

[7]  J. Römbke,et al.  Adaptation of the enchytraeid toxicity test for use with natural soil types , 2006 .

[8]  Tom Bongers,et al.  The maturity index: an ecological measure of environmental disturbance based on nematode species composition , 1990, Oecologia.

[9]  F. Binet,et al.  Rainfall effects on erosion of earthworm casts and phosphorus transfers by water runoff , 1999, Biology and Fertility of Soils.

[10]  R. Lal,et al.  Mechanisms of C Sequestration in Soils of Latin America , 2006 .

[11]  J.-P. Rossib,et al.  Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution ? , 2005 .

[12]  C. Rouland,et al.  Abundance of biogenic structures of earthworms and termites in a mango orchard , 2006 .

[13]  W. Fyfe,et al.  Global tectonics and agriculture: A geochemical perspective , 1983 .

[14]  P. Lavelle,et al.  Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites , 2005 .

[15]  Y. Le Bissonnais,et al.  Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d'Ivoire , 1997 .

[16]  R. Boerner,et al.  Effects of belowground grazing by collembola on growth, mycorrhizal infection, and P uptake of Geranium robertianum , 1990, Plant and Soil.

[17]  P. Lavelle,et al.  Plant parasite control and soil fauna diversity. , 2004, Comptes rendus biologies.

[18]  M. Brossard,et al.  Comportement de la phase argileuse lors de la dessiccation dans des Ferralsols microagrégés du Brésil : rôle de la microstructure et de la matière organique. , 2001 .

[19]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[20]  K. Thompson,et al.  Seeds in soil and worm casts from a neutral grassland , 1994 .

[21]  J. Anderson Invertebrate-mediated transport processes in soils , 1988 .

[22]  T. Decaëns,et al.  Chemical variations in the biostructures produced by soil ecosystem engineers. Examples from the neotropical savannas , 2006 .

[23]  P. Cadet,et al.  Nematodes, bacterial activity, soil characteristics and plant growth associated with termitaria in a sugarcane field in South Africa , 2004 .

[24]  I M Young,et al.  Interactions and Self-Organization in the Soil-Microbe Complex , 2004, Science.

[25]  D. Coleman,et al.  Long-term land-use effects on soil invertebrate communities in Southern Piedmont soils, USA , 2006 .

[26]  J. Thioulouse,et al.  Relationships between plant-parasitic nematode community, fallow duration and soil factors in the Sudano-Sahelian area of Senegal , 2005 .

[27]  P. Lavelleb,et al.  The values of soil animals for conservation biology , 2006 .

[28]  S. Subler,et al.  Spring dynamics of soil carbon, nitrogen, and microbial activity in earthworm middens in a no-till cornfield , 1998, Biology and Fertility of Soils.

[29]  C. Gilot,et al.  Effects of a tropical geophageous earthworm, M. anomala (Megascolecidae), on soil characteristics and production of a yam crop in Ivory Coast , 1997 .

[30]  T. Decaëns,et al.  Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture , 2001 .

[31]  Daniel Sabatier,et al.  The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest , 1997, Plant Ecology.

[32]  J. Litsinger,et al.  Dichogaster nr. curgensis Michaelsen (Annelida: Octochaetidae): An earthworm pest of terraced rice in the Philippine Cordilleras , 1997 .

[33]  J. Frouz,et al.  The effect of two ant species Lasius niger and Lasius flavus on soil properties in two contrasting habitats , 2006 .

[34]  D. T. Jones,et al.  Biodiversity and abundance of terrestrial isopods along a gradient of disturbance in Sabah, East Malaysia , 2006 .

[35]  S. Scheu,et al.  Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity , 2006 .

[36]  V. Brown,et al.  Biodiversity and ecosystem functioning in soil , 1997 .

[37]  P. Groffman,et al.  Earthworm Invasion, Fine-root Distributions, and Soil Respiration in North Temperate Forests , 2004, Ecosystems.

[38]  W. Didden Involvement of Enchytraeidae (Oligochaeta) in soil structure evolution in agricultural fields , 1990, Biology and Fertility of Soils.

[39]  B. Griffiths,et al.  Microbial-faunal interactions in the rhizosphere and effects on plant growth 1 Paper presented at , 2000 .

[40]  D. Parkinson,et al.  Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. , 2000 .

[41]  P. Groffman,et al.  Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States , 1998 .

[42]  P. Lavelle,et al.  Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France , 2002 .

[43]  Jean-Pierre Rossi,et al.  Spatial distribution of earthworms in acid-soil savannas of the eastern plains of Colombia , 2001 .

[44]  Jean-François Ponge,et al.  Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest , 1994 .

[45]  C. Feller,et al.  Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin , 2006 .

[46]  G. Sagar,et al.  Earthworms and Seeds , 1973, Nature.

[47]  P. Lavelle,et al.  Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia , 1999 .

[48]  T. Decaëns,et al.  Seed dispersion by surface casting activities of earthworms in Colombian grasslands , 2003 .

[49]  J. Tisdall,et al.  Organic matter and water‐stable aggregates in soils , 1982 .

[50]  A. Spain,et al.  Comparative growth of two pasture plants from northeastern australia on the mound materials of grass and litter-feeding termites (Isoptera: Termitidae) and on their associated surface soils , 1986 .

[51]  M. Hassall,et al.  Effects of disturbance on the biodiversity and abundance of isopods in temperate grasslands , 2006 .

[52]  W. Bowman,et al.  A temporal approach to linking aboveground and belowground ecology. , 2005, Trends in ecology & evolution.

[53]  E. T. Elliott Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils , 1986 .

[54]  P. Lavelle,et al.  Earthworms (Millsonia anomala, Megascolecidae) do not increase rice growth through enhanced nitrogen mineralization , 2006 .

[55]  W. H. van der Putten,et al.  Linking aboveground and belowground diversity. , 2005, Trends in ecology & evolution.

[56]  D. Parkinson,et al.  Soil impacts of the epigeic earthworm Dendrobaena octaedra on organic matter and microbial activity in lodgepole pine forest , 1997 .

[57]  Arief Lukman Hakim,et al.  Managing Tropical Rice Pests Through Conservation of Generalist Natural Enemies and Alternative Prey , 1996 .

[58]  C. Jonesa,et al.  Linking ecosystem engineers to soil processes : a framework using the Jenny State Factor Equation , 2006 .

[59]  X. Qin,et al.  Influence of agricultural intensification on the earthworm community in arable farmland in the North China Plain , 2006 .

[60]  Thibaud Decaëns,et al.  Propriétés des structures produites par les ingénieurs écologiques à la surface du sol d'une savane colombienne , 2001 .

[61]  J. Stoorvogel,et al.  The role of earthworms in the formation of sandy surface soils in a tropical forest in Ivory Coast. , 1995 .

[62]  J. Six,et al.  A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture , 2005 .

[63]  T. Fahey,et al.  Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest , 2002 .

[64]  M. Schaefer,et al.  The soil fauna of beech forests: comparison between a mull and a moder soil , 1990, Pedobiologia.

[65]  T. Hattori,et al.  Soil aggregates as microcosms of bacteria—protozoa biota , 1993 .

[66]  W. McGill,et al.  Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies , 2002 .

[67]  V. Hallaire,et al.  The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion , 2001 .

[68]  V. Wolters,et al.  The ant Lasius flavus alters the viable seed bank in pastures , 2006 .

[69]  J. Skjemstad,et al.  Soil structure and carbon cycling , 1994 .

[70]  G. Castaño-Meneses,et al.  Ants (Hymenoptera: Formicidae) diversity in agricultural ecosystems at Mezquital Valley, Hidalgo, Mexico , 2006 .

[71]  Jean-François Ponge,et al.  Une classification morphologique et fonctionnelle des formes d'humus. propositions du référentiel pédologique 1992 , 1994 .

[72]  J. Mathieu,et al.  Soil macrofaunal biodiversity in Amazonian pastures : Matching sampling with patterns , 2006 .

[73]  G. Daily,et al.  ECOSYSTEM SERVICES: Benefits Supplied to Human Societies by Natural Ecosystems , 2007 .

[74]  J. Willems,et al.  Vertical seed dispersal by earthworms: a quantitative approach , 1994 .

[75]  T. M. Bezemer,et al.  Soil invertebrate fauna enhances grassland succession and diversity , 2003, Nature.

[76]  V. Wolters,et al.  Soil function in a changing world: the role of invertebrate ecosystem engineers , 1997 .

[77]  O. J. Reichman,et al.  The role of pocket gophers as subterranean ecosystem engineers , 2002 .