A Birkhoff Connection Between Quantum Circuits and Linear Classical Reversible Circuits
暂无分享,去创建一个
[1] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[2] Wojciech Tadej,et al. A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..
[4] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[5] Alexis De Vos,et al. Decomposition of a Linear Reversible Computer: Digital Versus Analog , 2010, Int. J. Unconv. Comput..
[6] M. Wolf,et al. Sinkhorn normal form for unitary matrices , 2014, 1408.5728.
[7] Martin Rötteler,et al. Quantum Algorithms: Applicable Algebra and Quantum Physics , 2001 .
[8] Marc Baboulin,et al. Reuse Method for Quantum Circuit Synthesis , 2017 .
[9] Andreas Klappenecker,et al. Quantum Software Reusability , 2003, Int. J. Found. Comput. Sci..
[10] John P. Hayes,et al. Optimal synthesis of linear reversible circuits , 2008, Quantum Inf. Comput..
[11] A. D. Vos,et al. On two subgroups of U(n), useful for quantum computing , 2015 .
[12] Lin Chen,et al. The Birkhoff theorem for unitary matrices of arbitrary dimensions , 2017 .
[13] Alexis De Vos,et al. The NEGATOR as a Basic Building Block for Quantum Circuits , 2013, Open Syst. Inf. Dyn..
[14] Alexis De Vos,et al. Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits , 2018, Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits.
[15] Alexis De Vos,et al. Scaling a Unitary Matrix , 2014, Open Syst. Inf. Dyn..