Entity Linking in Web Tables with Multiple Linked Knowledge Bases

The World-Wide Web contains a large scale of valuable relational data, which are embedded in HTML tables (i.e. Web tables). To extract machine-readable knowledge from Web tables, some work tries to annotate the contents of Web tables as RDF triples. One critical step of the annotation is entity linking (EL), which aims to map the string mentions in table cells to their referent entities in a knowledge base (KB). In this paper, we present a new approach for EL in Web tables. Different from previous work, the proposed approach replaces a single KB with multiple linked KBs as the sources of entities to improve the quality of EL. In our approach, we first apply a general graph-based algorithm to EL in Web tables with each single KB. Then, we leverage the existing and newly learned “sameAs” relations between the entities from different KBs to help improve the results of EL in the first step. We conduct experiments on the sampled Web tables with Zhishi.me, which consists of three linked encyclopedic KBs. The experimental results show that our approach outperforms the state-of-the-art table’s EL methods in different evaluation metrics.

[1]  Alessandra Mileo,et al.  Using linked data to mine RDF from wikipedia's tables , 2014, WSDM.

[2]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[3]  Bianca Pereira,et al.  Entity Linking with Multiple Knowledge Bases: An Ontology Modularization Approach , 2014, SEMWEB.

[4]  Wei Shen,et al.  LIEGE:: link entities in web lists with knowledge base , 2012, KDD.

[5]  Guilin Qi,et al.  Zhishi.me - Weaving Chinese Linking Open Data , 2011, SEMWEB.

[6]  Ziqi Zhang,et al.  Towards Efficient and Effective Semantic Table Interpretation , 2014, SEMWEB.

[7]  Simone Paolo Ponzetto,et al.  BabelNet: Building a Very Large Multilingual Semantic Network , 2010, ACL.

[8]  Daisy Zhe Wang,et al.  WebTables: exploring the power of tables on the web , 2008, Proc. VLDB Endow..

[9]  Nick Craswell Mean Reciprocal Rank , 2009, Encyclopedia of Database Systems.

[10]  Ollivier Haemmerlé,et al.  Fuzzy Annotation of Web Data Tables Driven by a Domain Ontology , 2009, ESWC.

[11]  Tim Finin,et al.  Exploiting a Web of Semantic Data for Interpreting Tables , 2010 .

[12]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[13]  Timothy W. Finin,et al.  Semantic Message Passing for Generating Linked Data from Tables , 1999, SEMWEB.

[14]  Jayant Madhavan,et al.  Recovering Semantics of Tables on the Web , 2011, Proc. VLDB Endow..

[15]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[16]  Sergey Brin,et al.  Reprint of: The anatomy of a large-scale hypertextual web search engine , 2012, Comput. Networks.

[17]  Gerhard Weikum,et al.  YAGO: A Large Ontology from Wikipedia and WordNet , 2008, J. Web Semant..

[18]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[19]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[20]  Ziqi Zhang Learning with Partial Data for Semantic Table Interpretation , 2014, EKAW.

[21]  Doug Downey,et al.  TabEL: Entity Linking in Web Tables , 2015, SEMWEB.

[22]  Sunita Sarawagi,et al.  Annotating and searching web tables using entities, types and relationships , 2010, Proc. VLDB Endow..