Comments on unknown channels

The idea of modeling an unknown channel using a broadcast channel was first introduced by Cover1 in 1972. This paper builds on his line of thought to consider priority encoding of communication over unknown channels without feedback, using fixed-length codes and from a single-shot, individual channel perspective. A ratio-regret metric is used to understand how well we can perform with respect to the actual channel realization.

[1]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[2]  George Atia,et al.  A technical framework for light- handed regulation of cognitive radios , 2009, IEEE Communications Magazine.

[3]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Anand D. Sarwate,et al.  Zero-Rate Feedback Can Achieve the Empirical Capacity , 2007, IEEE Transactions on Information Theory.

[6]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[7]  Toby Berger,et al.  All sources are nearly successively refinable , 2001, IEEE Trans. Inf. Theory.

[8]  William Equitz,et al.  Successive refinement of information , 1991, IEEE Trans. Inf. Theory.

[9]  D. Blackwell,et al.  The Capacities of Certain Channel Classes Under Random Coding , 1960 .

[10]  Tsachy Weissman,et al.  The porosity of additive noise sequences , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Stéphane Boucheron,et al.  About priority encoding transmission , 2000, IEEE Trans. Inf. Theory.

[12]  Munther A. Dahleh,et al.  Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.

[13]  Suhas N. Diggavi,et al.  Successive Refinement Via Broadcast: Optimizing Expected Distortion of a Gaussian Source Over a Gaussian Fading Channel , 2008, IEEE Transactions on Information Theory.

[14]  Thomas M. Cover,et al.  Comments on Broadcast Channels , 1998, IEEE Trans. Inf. Theory.

[15]  Andrea J. Goldsmith,et al.  Minimum Expected Distortion in Gaussian Layered Broadcast Coding with Successive Refinement , 2007, 2007 IEEE International Symposium on Information Theory.

[16]  Shlomo Shamai,et al.  Variable-Rate Channel Capacity , 2010, IEEE Transactions on Information Theory.

[17]  Meir Feder,et al.  Communicating using feedback over a binary channel with arbitrary noise sequence , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[18]  Anant Sahai,et al.  Potential collapse of whitespaces and the prospect for a universal power rule , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[19]  Lizhong Zheng,et al.  Unequal Error Protection: An Information-Theoretic Perspective , 2008, IEEE Transactions on Information Theory.

[20]  Lizhong Zheng,et al.  Multilevel Broadcast Networks , 2007, 2007 IEEE International Symposium on Information Theory.

[21]  Vivek K. Goyal,et al.  An Information-Theoretic Characterization of Channels That Die , 2009, IEEE Transactions on Information Theory.

[22]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.

[23]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[24]  Shlomo Shamai,et al.  A broadcast strategy for the Gaussian slowly fading channel , 1997, Proceedings of IEEE International Symposium on Information Theory.

[25]  Meir Feder,et al.  Communication Over Individual Channels , 2009, IEEE Transactions on Information Theory.

[26]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.