The Method of Alternating Relaxed Projections for Two Nonconvex Sets

[1]  P. L. Combettes,et al.  Asymptotic behavior of compositions of under-relaxed nonexpansive operators , 2013, 1304.7078.

[2]  A. Cegielski Iterative Methods for Fixed Point Problems in Hilbert Spaces , 2012 .

[3]  Heinz H. Bauschke,et al.  Restricted Normal Cones and the Method of Alternating Projections: Applications , 2012, 1205.0318.

[4]  Heinz H. Bauschke,et al.  Restricted Normal Cones and the Method of Alternating Projections: Theory , 2012 .

[5]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[6]  Heinz H. Bauschke,et al.  Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial an , 2010, 1003.4793.

[7]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[8]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets , 2008, J. Approx. Theory.

[9]  D. Russell Luke,et al.  Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..

[10]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm I: Angles between convex sets , 2006, J. Approx. Theory.

[11]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm II: Norms of nonlinear operators , 2006, J. Approx. Theory.

[12]  Patrick L. Combettes * Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[13]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[14]  Heinz H. Bauschke The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space , 1996 .

[15]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[16]  H. Trussell,et al.  Method of successive projections for finding a common point of sets in metric spaces , 1990 .

[17]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[18]  Y. Censor,et al.  Block-iterative projection methods for parallel computation of solutions to convex feasibility problems , 1989 .

[19]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[20]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[21]  Norbert Wiener,et al.  On the factorization of matrices , 1955 .

[22]  John von Neumann,et al.  Functional Operators (AM-21), Volume 1: Measures and Integrals. (AM-21) , 1950 .

[23]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[24]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[25]  F. Deutsch Best approximation in inner product spaces , 2001 .

[26]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[27]  D. Varberg Convex Functions , 1973 .

[28]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[29]  John von Neumann,et al.  The geometry of orthogonal spaces , 1950 .

[30]  M. Fabian,et al.  Uniform Convexity of , 2022 .