Discourses and Disciplines in the Enlightenment: Topic Modeling the French Encyclopédie

This paper describes the use of Latent Dirichlet Allocation (LDA), or topic modeling, to explore the discursive makeup of the18th-century Encyclopedie of Denis Diderot and Jean le Rond d’Alembert (1751-1772). Expanding upon previous work modeling the Encyclopedie’s ontology, or classification scheme, we examine the abstractions used by its editors to visualize the various ‘systems’ of knowledge that the work proposes, considered here as heuristic tools for navigating the complex information space of the Encyclopedie. Using these earlier experiments with supervised machine learning models as a point of reference, we introduce the notion of topic modeling as a ‘discourse analysis tool’ for Enlightenment studies. In so doing, we draw upon the tradition of post-structuralist French discourse analysis, one of the first fields to embrace computational approaches to discursive text analysis. Our particular use of LDA is thus aimed primarily at uncovering inter-disciplinary ‘discourses’ in the Encyclopedie that run alongside, under, above, and through the original classifications. By mapping these discourses and discursive practices we can begin to move beyond the organizational (and physical) limitations of the print edition, suggesting several possible avenues of future research. These experiments thus attest once again to the enduring relevance of the Encyclopedie as an exemplary Enlightenment text. Its rich dialogical structure, whether studied using traditional methods of close reading or through the algorithmic processes described in this paper, is perhaps only now coming fully to light thanks to recent developments in digital resources and methods.

[1]  E. Cassirer The Philosophy of the Enlightenment , 1952 .

[2]  Mark Olsen,et al.  Hidden Roads and Twisted Paths: Intertextual Discovery using Clusters, Classifications, and Similarities , 2008 .

[3]  Matthew L. Jockers Macroanalysis: Digital Methods and Literary History , 2013 .

[4]  Michel Pêcheux,et al.  Analyse automatique du discours , 1969 .

[5]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[6]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[7]  D. Edelstein The Terror of Natural Right: Republicanism, the Cult of Nature, and the French Revolution , 2009 .

[8]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[9]  Glenn Roe,et al.  To Quote or not to Quote: Citation Strategies in the Encyclopédie , 2013 .

[10]  M. Foucault,et al.  The Order of Things , 2017 .

[11]  François Furet,et al.  Penser la Révolution française , 1981 .

[12]  D. Edelstein The Enlightenment: A Genealogy , 2010 .

[13]  David B. Dunson,et al.  Probabilistic topic models , 2012, Commun. ACM.

[14]  Ruslan Salakhutdinov,et al.  Evaluation methods for topic models , 2009, ICML '09.

[15]  Niels Helsloot,et al.  La contribution de Michel Pcheux l'analyse de discours , 2000 .

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[18]  Fabio Stella,et al.  Topic model validation , 2012, Neurocomputing.

[19]  Mark Olsen,et al.  Re-Engineering the Tree of Knowledge: Vector Space Analysis and Centroid-Based Clustering in the Encyclopédie , 2008 .

[20]  K. Baker,et al.  Inventing the French Revolution: Essays on French Political Culture in the Eighteenth Century , 2012 .

[21]  Fadi A. Thabtah,et al.  A Comparative Study using Vector Space Model with K-Nearest Neighbor on Text Categorization Data , 2007, World Congress on Engineering.

[22]  Timothy Baldwin,et al.  Automatic Evaluation of Topic Coherence , 2010, NAACL.

[23]  David R. Beukelman When You Have a Hammer, Everything Looks Like a Nail. , 1987 .

[24]  D. Diderot,et al.  Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et des métiers , 1963 .

[25]  Sarah C. Maza Politics, culture, and class in the French revolution , 1987 .

[26]  David Newman,et al.  Are learned topics more useful than subject headings , 2011, JCDL '11.

[27]  Marie Leca-Tsiomis Ecrire l'Encyclopédie: Diderot: de l'usage des dictionnaires à la grammaire philosophique , 1999 .

[28]  G. Gutting The archaeology of knowledge , 1989 .

[29]  Manuel Lima,et al.  The Book of Trees: Visualizing Branches of Knowledge , 2014 .

[30]  Gilles Blanchard,et al.  Le système de renvois dans l’Encyclopédie : Une cartographie des structures de connaissances au XVIIIe siècle , 2002 .

[31]  Mark Olsen,et al.  Mining Eighteenth Century Ontologies: Machine Learning and Knowledge Classification in the Encyclopédie , 2009, Digit. Humanit. Q..

[32]  Michel Pêcheux Language, Semantics and Ideology , 1982 .

[33]  David J. Newman,et al.  Probabilistic topic decomposition of an eighteenth-century American newspaper , 2006, J. Assoc. Inf. Sci. Technol..

[34]  Mark Olsen,et al.  Plundering Philosophers: Identifying Sources of the Encyclopédie. , 2010 .

[35]  Glyndwr Williams French Discourse Analysis: The Method of Post-Structuralism , 1999 .

[36]  Paul Ricoeur LA MÉTAPHORE VIVE , 1976 .

[37]  L Andreev,et al.  Re-engineering a war-machine : ARTFL's encyclopédie , 1999 .

[38]  J. Proust Diderot et l'Encyclopédie , 1964 .