SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum

Abstract This paper describes a computationally fast and accurate technique for the atmospheric correction of satellite measurements in the solar spectrum. The main advantage of the method is that it is several hundred times faster than more detailed radiative transfer models like 5S and that it does not require precalculated look-up tables. The method is especially useful for correcting the huge amounts of data acquired by large-field-of-view high-repetitivity sensors, like the ones on board polar orbiting and geostationary meteorological satellites. The technique is based on a set of equations with coefficients which depend on the spectral band of the sensor. Semi-empirical formulations are used to describe the different interactions (absorption, scattering, etc.) of solar radiation with atmospheric constituents during its traverse through the atmosphere. Sensor specific coefficients of each equation are determined using a best fit technique against the computations of the 5S code (Simulation of Satelli...