On the feasibility of a scalable opto-electronic CRCW shared memory

We discuss the results of a feasibility study of an opto-electronic shared memory with concurrent read, concurrent write capability. Unlike previous such work we consider a true hardware shared memory rather then a simulation on a tightly, optically connected distributed memory computer. We describe a design that could be implemented using compact integrated semiconductor modules and propose ways to solve two major problems faced by such a device: optical system complexity and parallel word level write consistency. It is shown that, in principle, a memory with GBytes capacity and a latency of less then 1 ns, accessed by up to 10/sup 5/ processors could be feasible. Using devices currently available as laboratory prototypes and taking into account energy and crosstalk considerations a capacity of more then 1 MB and a latency of about 50 ns might be attained for up to 1000 processors.<<ETX>>

[1]  E E Frietman,et al.  Parallel optical interconnects: implementation of optoelectronics in multiprocessor architectures. , 1990, Applied optics.

[2]  Mitsumasa Koyanagi,et al.  Design of 4-kbit*4-layer optically coupled three-dimensional common memory for parallel processor system , 1990 .

[3]  John R. Gilbert,et al.  Aligning parallel arrays to reduce communication , 1994, Proceedings Frontiers '95. The Fifth Symposium on the Frontiers of Massively Parallel Computation.

[4]  A W Lohmann,et al.  Globality and speed of optical parallel processors. , 1989, Applied optics.

[5]  R. Völkel,et al.  Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnects. , 1992, Applied optics.

[6]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[7]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[8]  J Glanz,et al.  Will holograms tame the data glut? , 1994, Science.

[9]  Wolfgang J. Paul,et al.  On the Physical Design of PRAMs , 1992, Comput. J..

[10]  David A. B. Miller,et al.  Quantum Wells For Optical Information Processing , 1987 .

[11]  Martti J. Forsell,et al.  Are multiport memories physically feasible? , 1994, CARN.

[12]  R. A. Falk,et al.  Optical computing using residue arithmetic , 1987 .

[13]  T. J. Drabik,et al.  Optoelectronic integrated systems based on free-space interconnects with an arbitrary degree of space variance , 1994, Proc. IEEE.

[14]  Siddhartha Chatterjee,et al.  Compiling nested data-parallel programs for shared-memory multiprocessors , 1993, TOPL.

[15]  Jürgen Jahns,et al.  Planar packaging of free-space optical interconnections , 1994, Proc. IEEE.

[16]  C C Guest,et al.  Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities. , 1989, Applied optics.

[17]  J. P. Harbison,et al.  Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.

[18]  A. A. Sawchuk,et al.  Considerations for optoelectronic shared cache parallel computers , 1994, First International Workshop on Massively Parallel Processing Using Optical Interconnections.

[19]  T J Cloonan,et al.  Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays. , 1994, Applied optics.

[20]  J L de Bougrenet de la Tocnaye,et al.  Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator. , 1991, Applied optics.

[21]  Alastair D. McAulay,et al.  Optical word parallel interconnections between optical random access memories , 1992, Defense, Security, and Sensing.

[22]  Kai Li,et al.  IVY: A Shared Virtual Memory System for Parallel Computing , 1988, ICPP.

[23]  D. S. Wills,et al.  A fine-grain, high-throughput architecture using through-wafer optical interconnect , 1994, First International Workshop on Massively Parallel Processing Using Optical Interconnections.

[24]  A. Lohmann What classical optics can do for the digital optical computer. , 1986, Applied optics.

[25]  Anthony L. Lentine,et al.  Diode‐clamped symmetric self‐electro‐optic effect devices with subpicojoule switching energies , 1992 .

[26]  Richard G. Zech Volume Hologram Optical Memories: Mass Storage Future Perfect? , 1992 .

[27]  A Von Lehmen,et al.  Compact and ultrafast holographic memory using a surface-emitting microlaser diode array. , 1990, Optics letters.

[28]  J. E. Midwinter Optical Computer Architectures , 1991 .

[29]  Dror G. Feitelson Optical computing - a survey for computer scientists , 1988 .

[30]  Bernhard Hill,et al.  Optical Memory Systems , 1978 .

[31]  Werner Erhard,et al.  Parallele digitale optische Recheneinheiten , 1994 .

[32]  K H Brenner,et al.  Implementation of an optical crossbar network based on directional switches. , 1992, Applied optics.

[33]  John E. Cunningham,et al.  Symmetric self-electrooptic effect device (A) , 1987 .

[34]  Michael Philippsen,et al.  Synchronization barrier elimination in synchronous FORALLs , 1993 .

[35]  Tim J. Harris,et al.  A survey of PRAM simulation techniques , 1994, CSUR.

[36]  Abhiram G. Ranade,et al.  How to emulate shared memory , 1991, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[37]  B K Jenkins,et al.  Shared-memory optical/electronic computer: architecture and control. , 1994, Applied optics.