Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification
暂无分享,去创建一个
Adam Hapij | Michael D. Shields | Kirubel Teferra | Raymond P. Daddazio | K. Teferra | M. Shields | R. Daddazio | A. Hapij
[1] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[2] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[3] Michael A. Sprague,et al. Spectral elements and field separation for an acoustic fluid subject to cavitation , 2003 .
[4] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[5] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[6] A. Owen. A Central Limit Theorem for Latin Hypercube Sampling , 1992 .
[7] William H. Press,et al. Recursive stratified sampling for multidimensional Monte Carlo integration , 1990 .
[8] Thomas W. Lucas,et al. Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes , 2007, Technometrics.
[9] Michael A. Sprague,et al. Computational Treatments of Cavitation Effects in Near-Free-Surface Underwater Shock Analysis , 2001 .
[10] Peter Winker,et al. Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..
[11] Michael D. Shields,et al. Targeted random sampling: a new approach for efficient reliability estimation for complex systems , 2015 .
[12] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[13] Mircea Grigoriu,et al. Reduced order models for random functions. Application to stochastic problems , 2009 .
[14] R. Iman,et al. A distribution-free approach to inducing rank correlation among input variables , 1982 .
[15] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[16] J. Hammersley. SIMULATION AND THE MONTE CARLO METHOD , 1982 .
[17] Miroslav Vorechovský,et al. Hierarchical Refinement of Latin Hypercube Samples , 2015, Comput. Aided Civ. Infrastructure Eng..
[18] Peter Z. G. Qian. Nested Latin hypercube designs , 2009 .
[19] A. Olsson,et al. On Latin hypercube sampling for structural reliability analysis , 2003 .
[20] I. S. Sandler,et al. Uncoupling Approximations in Fluid-Structure Interaction Problems With Cavitation , 1981 .
[21] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[22] G. Lepage. A new algorithm for adaptive multidimensional integration , 1978 .
[23] V. R. Joseph,et al. ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS , 2008 .
[24] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[25] Michael J. Gilman,et al. A brief survey of stopping rules in Monte Carlo simulations , 1968 .
[26] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[27] Christopher J. Roy,et al. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .
[28] K. D. Tocher,et al. The art of simulation , 1967 .
[29] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[30] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[31] Jeong‐Soo Park. Optimal Latin-hypercube designs for computer experiments , 1994 .
[32] M. Liefvendahl,et al. A study on algorithms for optimization of Latin hypercubes , 2006 .
[33] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[34] Hans H. Bleich,et al. Interaction between structures and bilinear fluids , 1970 .
[35] Chang-Xing Ma,et al. Wrap-Around L2-Discrepancy of Random Sampling, Latin Hypercube and Uniform Designs , 2001, J. Complex..
[36] FangKai-Tai,et al. Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002 .
[37] Kenny Q. Ye. Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .
[38] Adam Hapij,et al. Mapping model validation metrics to subject matter expert scores for model adequacy assessment , 2014, Reliab. Eng. Syst. Saf..
[39] Drahomír Novák,et al. Sample size extension in stratified sampling: Theory and software implementation , 2014 .
[40] Aleš Florian,et al. An efficient sampling scheme: Updated Latin Hypercube Sampling , 1992 .
[41] George N. Karystinos,et al. Fast generation of space-filling Latin hypercube sample designs. , 2010 .
[42] Michael D. McKay,et al. Evaluating Prediction Uncertainty , 1995 .
[43] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .
[44] D. Huntington,et al. Improvements to and limitations of Latin hypercube sampling , 1998 .
[45] Kenny Q. Ye,et al. Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .
[46] C. F. Jeff Wu,et al. Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .
[47] G. G. Wang,et al. Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .
[48] M. Kalos,et al. Monte Carlo methods , 1986 .
[49] Charles Tong,et al. Refinement strategies for stratified sampling methods , 2006, Reliab. Eng. Syst. Saf..
[50] Wei Chen,et al. Optimizing Latin hypercube design for sequential sampling of computer experiments , 2009 .
[51] Jon C. Helton,et al. Extension of Latin hypercube samples with correlated variables , 2008, Reliab. Eng. Syst. Saf..
[52] D. Novák,et al. CORRELATION CONTROL IN SMALL-SAMPLE MONTE CARLO TYPE SIMULATIONS I: A SIMULATED ANNEALING APPROACH , 2009 .
[53] G. Rennen,et al. Nested maximin Latin hypercube designs , 2009 .
[54] Hans Janssen,et al. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence , 2013, Reliab. Eng. Syst. Saf..