Analysis of the periodically fragmented environment model : I - Influence of periodic heterogeneous environment on species persistence.

This paper is concerned with the study of the stationary solutions of the equation $$u_t-\nabla\cdot(A(x)\nabla u)=f(x,u),\ \ x\in{\mathbb{R}}^N,$$ where the diffusion matrix $A$ and the reaction term $f$ are periodic in $x$. We prove existence and uniqueness results for the stationary equation and we then analyze the behaviour of the solutions of the evolution equation for large times. These results are expressed by a condition on the sign of the first eigenvalue of the associated linearized problem with periodicity condition. We explain the biological motivation and we also interpret the results in terms of species persistence in periodic environment. The effects of various aspects of heterogeneities, such as environmental fragmentation are also discussed.

[1]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[2]  Chris Cosner,et al.  Diffusive logistic equations with indefinite weights: population models in disrupted environments II , 1991 .

[3]  R. Pinsky,et al.  On the Construction and Support Properties of Measure-Valued Diffusions on $D \subseteq \mathbb{R}^d$ with Spatially Dependent Branching , 1999 .

[4]  F. M. Arscott,et al.  PERIODIC‐PARABOLIC BOUNDARY VALUE PROBLEMS AND POSITIVITY , 1992 .

[5]  Hans F. Weinberger,et al.  On spreading speeds and traveling waves for growth and migration models in a periodic habitat , 2002, Journal of mathematical biology.

[6]  R. Pinsky Positive Harmonic Functions and Diffusion: References , 1995 .

[7]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[8]  Chris Cosner,et al.  On the effects of spatial heterogeneity on the persistence of interacting species , 1998 .

[9]  Newton E. Morton,et al.  The Neolithic Transition and the Genetics of Populations in Europe. , 2022 .

[10]  Hans F. Weinberger,et al.  Spatial patterning of the spruce budworm , 1979 .

[11]  Mark Freidlin,et al.  Semi-linear pde's and limit theorems for large deviations , 1992 .

[12]  Chris Cosner,et al.  The effects of spatial heterogeneity in population dynamics , 1991 .

[13]  Bertram Zinner,et al.  EXISTENCE OF TRAVELING WAVES FOR REACTION DIFFUSION EQUATIONS OF FISHER TYPE IN PERIODIC MEDIA , 1995 .

[14]  M. Feldman,et al.  Cultural transmission and evolution: a quantitative approach. , 1981, Monographs in population biology.

[15]  Peter Kuchment,et al.  Waves in Periodic and Random Media , 2003 .

[16]  Song-Sun Lin,et al.  On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function , 1980 .

[17]  R. Pinsky Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions , 1995 .

[18]  Thomas Lachand-Robert,et al.  Some properties of monotone rearrangement with applications to elliptic equations in cylinders , 2004 .

[19]  Josie Hughes MODELING THE EFFECT OF LANDSCAPE PATTERN ON MOUNTAIN PINE BEETLES , 2002 .

[20]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[21]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[22]  J. Murray,et al.  Minimum domains for spatial patterns in a class of reaction diffusion equations , 1983, Journal of mathematical biology.

[23]  Michael Grinfeld,et al.  Markov processes and differential equations: Asymptotic problems , by M. I. Freidlin. Pp. 152. £19. 1996. ISBN 3-7643-5392-9 (Birkhäuser, Basel). , 1997 .

[24]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[25]  Chris Cosner,et al.  Diffusive logistic equations with indefinite weights: population models in disrupted environments , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  V. Hutson,et al.  The evolution of dispersal rates in a heterogeneous time-periodic environment , 2001, Journal of mathematical biology.

[27]  S. Varadhan,et al.  The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .

[28]  R. Pinsky TRANSIENCE, RECURRENCE AND LOCAL EXTINCTION PROPERTIES OF THE SUPPORT FOR SUPERCRITICAL FINITE MEASURE-VALUED DIFFUSIONS' , 1996 .

[29]  P. Hess,et al.  Periodic-Parabolic Boundary Value Problems and Positivity , 1991 .

[30]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[31]  Noriko Kinezaki,et al.  Modeling biological invasions into periodically fragmented environments. , 2003, Theoretical population biology.

[32]  J. López-Gómez,et al.  Permanence under strong aggressions is possible , 2003 .

[33]  Stefan Senn,et al.  On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics , 1983 .

[34]  Yves Capdeboscq Homogenization of a neutronic critical diffusion problem with drift , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[35]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[36]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[37]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[38]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[39]  Peter Hess,et al.  On positive solutions of a linear elliptic eigenvalue problem with neumann boundary conditions , 1982 .

[40]  Bernhard Kawohl,et al.  On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems , 1986 .

[41]  Evans M. Harrell,et al.  On the Placement of an Obstacle or a Well so as to Optimize the Fundamental Eigenvalue , 2001, SIAM J. Math. Anal..

[42]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[43]  Henri Berestycki,et al.  Le nombre de solutions de certains problèmes semi-linéaires elliptiques , 1981 .

[44]  Simulations of the heterogeneity of environments by finite element methods , 1995 .

[45]  R. Pinsky,et al.  Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form ut=Lu+Vu−γup in Rn , 2003 .

[46]  Andreas E. Kyprianou,et al.  Local extinction versus local exponential growth for spatial branching processes , 2004 .

[47]  David E. Hiebeler,et al.  Populations on fragmented landscapes with spatially structured heterogeneities : Landscape generation and local dispersal , 2000 .