A study on hot extrusion of Ti–6Al–4V using simulations and experiments

Abstract Hot extrusion of Ti–6Al–4V alloy has been studied using finite element simulation and the results are compared with those obtained experimentally. First, the constitutive behavior of the material and friction at the extrusion temperatures are established based on the results obtained through cylindrical and ring compression tests, respectively. While the flow stress below β transus temperature is expressed as a strain-dependent function, it is taken as strain-independent one at higher temperatures. The distribution of strain, temperature and effective stress has been simulated under different design and processing conditions. Simulation results show that heat generation due to deformation is significant (as much as 160°C) in the hot extrusion of Ti alloys, and it mainly occurs at the beginning of the extrusion process. This leads to reduction in flow stress which, in turn, leads to enlarged deformation zone. A fair agreement has been found between the experimental results and those obtained through simulations.