Efficient quantum private comparison employing single photons and collective detection

Two efficient quantum private comparison (QPC) protocols are proposed, employing single photons and collective detection. In the proposed protocols, two distrustful parties (Alice and Bob) compare the equivalence of information with the help of a semi-honest third party (TP). Utilizing collective detection, the cost of practical realization is reduced greatly. In the first protocol, TP gains the result of the comparison. While in the second protocol, TP cannot get the comparison result. In both of our protocols, Alice and Bob only need be equipped with unitary operation machines, such as phase plates. So Alice and Bob need not to have the expensive quantum devices, such as qubit generating machine, quantum memory machine and quantum measuring machine. Security of the protocols is ensured by theorems on quantum operation discrimination.

[1]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[2]  Deborah J. Jackson,et al.  Securing QKD Links in the Full Hilbert Space , 2005, Quantum Inf. Process..

[3]  Qiao-Yan Wen,et al.  Secure quantum private comparison , 2009 .

[4]  Costantino De Angelis,et al.  Light propagation in nonuniform plasmonic subwavelength waveguide arrays , 2010 .

[5]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[6]  T. W. Lynn,et al.  Entanglement-secured single-qubit quantum secret sharing , 2011 .

[7]  Howard E. Brandt Unambiguous State Discrimination in Quantum Key Distribution , 2005, Quantum Inf. Process..

[8]  Tzonelih Hwang,et al.  Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements , 2011 .

[9]  Wen Liu,et al.  An efficient protocol for the quantum private comparison of equality with W state , 2011 .

[10]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[11]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[12]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[13]  Quantum cryptography based on bell theorem pdf , 2015 .

[14]  Fei Gao,et al.  Quantum protocol for millionaire problem , 2011 .

[15]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[16]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[17]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[18]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[19]  Mingsheng Ying,et al.  Unambiguous discrimination among quantum operations , 2006 .

[20]  Bin Liu,et al.  Single-Photon Multiparty Quantum Cryptographic Protocols With Collective Detection , 2011, IEEE Journal of Quantum Electronics.

[21]  F. Bussières,et al.  Fair Loss-Tolerant Quantum Coin Flipping , 2009, 0904.3945.

[22]  Runhua Shi,et al.  Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state , 2011, Quantum Inf. Process..

[23]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[24]  Tzonelih Hwang,et al.  New Efficient Three-Party Quantum Key Distribution Protocols , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Ashwin Nayak,et al.  Bit-commitment-based quantum coin flipping , 2002, quant-ph/0206123.

[26]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[27]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[28]  Serge Massar,et al.  Quantum coin tossing and bit-string generation in the presence of noise (6 pages) , 2004 .

[29]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[30]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[31]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[32]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[33]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[34]  Qin Li,et al.  Sharing a quantum secret without a trusted party , 2008, Quantum Inf. Process..

[35]  Morad El Baz,et al.  Quantum key distribution via tripartite coherent states , 2011, Quantum Inf. Process..

[36]  M. Ying,et al.  Unambiguous discrimination among quantum operations (5 pages) , 2006 .

[37]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[38]  Yuan Wang,et al.  Member expansion in quantum (t,n) threshold secret sharing schemes , 2011 .