Canonical Variable Analysis and Long Short-term Memory for Fault Diagnosis and Performance Estimation of a Centrifugal Compressor

[1]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[2]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[3]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[4]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[5]  Ali Cinar,et al.  Monitoring of Multivariable Dynamic Processes and Sensor Auditing , 1997 .

[6]  Stefano Campanari Full Load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems , 1999 .

[7]  Anne B. Koehler,et al.  Forecasting models and prediction intervals for the multiplicative Holt-Winters method , 2001 .

[8]  Richard D. Braatz,et al.  Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis , 2000 .

[9]  S. Joe Qin,et al.  Consistent dynamic PCA based on errors-in-variables subspace identification , 2001 .

[10]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[11]  K. Goebel,et al.  Metrics for evaluating performance of prognostic techniques , 2008, 2008 International Conference on Prognostics and Health Management.

[12]  Grigorios Dimitriadis,et al.  Diagnosis of Process Faults in Chemical Systems Using a Local Partial Least Squares Approach , 2008 .

[13]  Yi Cao,et al.  Nonlinear Dynamic Process Monitoring Using Canonical Variate Analysis and Kernel Density Estimations , 2009 .

[14]  Chunjie Zhou,et al.  The optimal drift-compensatory and fault tolerant approach for mixed-product run-to-run control , 2009 .

[15]  Eric Bechhoefer,et al.  Stochastic Modeling of Damage Physics for Mechanical Component Prognostics Using Condition Indicators , 2009 .

[16]  A. Ben Hamza,et al.  Dynamic independent component analysis approach for fault detection and diagnosis , 2010, Expert Syst. Appl..

[17]  Ying Zheng,et al.  Cycle forecasting EWMA (CF-EWMA) approach for drift and fault in mixed-product run-to-run process , 2010 .

[18]  Jie Zhang,et al.  An EWMA Algorithm With a Cycled Resetting (CR) Discount Factor for Drift and Fault of High-Mix Run-to-Run Control , 2010, IEEE Transactions on Industrial Informatics.

[19]  Jie Zhang,et al.  Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach , 2012, Comput. Chem. Eng..

[20]  Hazem Nounou,et al.  Statistical fault detection using PCA-based GLR hypothesis testing , 2013 .

[21]  Jason R. Kolodziej,et al.  A Data-Driven Approach for Condition Monitoring of Reciprocating Compressor Valves , 2014 .

[22]  Yi Cao,et al.  A benchmark of Canonical Variate Analysis for fault detection and diagnosis , 2014, 2014 UKACC International Conference on Control (CONTROL).

[23]  Edwin Lughofer,et al.  Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations , 2014, Inf. Fusion.

[24]  Andrew D. Ball,et al.  An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks , 2014, Expert Syst. Appl..

[25]  Dexian Huang,et al.  Canonical variate analysis-based contributions for fault identification , 2015 .

[26]  Toyoaki Nishida,et al.  Data Mining for Social Robotics , 2015, Advanced Information and Knowledge Processing.

[27]  Okyay Kaynak,et al.  Improved PLS Focused on Key-Performance-Indicator-Related Fault Diagnosis , 2015, IEEE Transactions on Industrial Electronics.

[28]  Tian Xuemin,et al.  A Nonlinear Quality-relevant Process Monitoring Method with Kernel Input-output Canonical Variate Analysis , 2015 .

[29]  Yi Cao,et al.  Kernel Canonical Variate Analysis for Nonlinear Dynamic Process Monitoring , 2015 .

[30]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[31]  Toyoaki Nishida,et al.  Data Mining for Social Robotics: Toward Autonomously Social Robots , 2016 .

[32]  Ian K. Craig,et al.  Should I shut down my processing plant? An analysis in the presence of faults☆ , 2017 .

[33]  John B. Butcher,et al.  Structural health monitoring of a footbridge using Echo State Networks and NARMAX , 2017, Eng. Appl. Artif. Intell..

[34]  Hoang Huu Son Toward a proposed framework for mood recognition using LSTM Recurrent Neuron Network , 2017, ANT/SEIT.

[35]  Adel M. Alimi,et al.  PSO-based analysis of Echo State Network parameters for time series forecasting , 2017, Appl. Soft Comput..

[36]  Xiaobo Zhang,et al.  Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm , 2017 .

[37]  DeLiang Wang,et al.  Long short-term memory for speaker generalization in supervised speech separation. , 2017, The Journal of the Acoustical Society of America.

[38]  Li Lin,et al.  Remaining useful life estimation of engineered systems using vanilla LSTM neural networks , 2018, Neurocomputing.