Synthesis and Characterization of Semi-Interpenetrating Networks Based on Poly(dimethylsiloxane) and Poly(vinyl alcohol)

Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (OH) and hydrophobic (Si(CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of ∼ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

[1]  M. Brook,et al.  Using a drug to structure its release matrix and release profile. , 2008, International journal of pharmaceutics.

[2]  F. Ganachaud,et al.  Direct Synthesis of PVA-g-PDMS in Microsuspension , 2008 .

[3]  F. Margaça,et al.  Hybrid PDMS–Silica–Zirconia materials prepared by γ-irradiation , 2007 .

[4]  Ali Khademhosseini,et al.  Microengineered hydrogels for tissue engineering. , 2007, Biomaterials.

[5]  M. Schiavon,et al.  Jacobsen catalyst as a P450 biomimetic model for the oxidation of an antiepileptic drug , 2007 .

[6]  N. M. José,et al.  Partially pyrolyzed poly(dimethylsiloxane)‐based networks: Thermal characterization and evaluation of the gas permeability , 2007 .

[7]  E. Drioli,et al.  Catalytic polymeric membranes: Preparation and application , 2006 .

[8]  J. Way,et al.  Characterization of silicone rubber membrane materials at low temperature and low pressure conditions , 2006 .

[9]  K. Ciuffi,et al.  Investigation of a new oxidative catalytic system involving Jacobsen's catalyst in the absence of organic solvents , 2005 .

[10]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[11]  N. M. José,et al.  Polymeric membranes: the role this support plays in the reactivity of the different generations of metalloporphyrins , 2005 .

[12]  Jen-Ming Yang,et al.  Evaluation of chitosan/PVA blended hydrogel membranes , 2004 .

[13]  E. Kazancıoğlu,et al.  Synthesis, characterization and thermoreversible behaviours of poly(dimethyl siloxane)/poly(N-isopropyl acrylamide) semi-interpenetrating networks , 2004 .

[14]  S. K. Dolui,et al.  Synthesis and Characterisation of Polyvinyl alcohol (PVA)/Silica Hybrid Composites Derived Through the Sol-Gel Method in Aqueous Medium: Effect of Acid Content, Silica Content and Viscosity of PVA on the Dispersion Characteristics of Silica and the Physical Properties of the Composites , 2004 .

[15]  Bin Ding,et al.  Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning , 2003 .

[16]  Congming Xiao,et al.  Synthesis and properties of degradable poly(vinyl alcohol) hydrogel , 2003 .

[17]  M. Gottlieb,et al.  Crystallization of PDMS: The effect of physical and chemical crosslinks , 2002 .

[18]  Chulgyu Song,et al.  Swollen behavior of crosslinked network hydrogels based on poly(vinyl alcohol) and polydimethylsiloxane , 2002 .

[19]  Seon Jeong Kim,et al.  Characterization of hydrogels based on chitosan and copolymer of poly(dimethylsiloxane) and poly(vinyl alcohol) , 2002 .

[20]  M. Schiavon,et al.  Investigation on kinetics of thermal decomposition in polysiloxane networks used as precursors of silicon oxycarbide glasses , 2002 .

[21]  J. N. Hay,et al.  The thermal degradation of poly(vinyl alcohol) , 2001 .

[22]  I. Torriani,et al.  Polycyclic silicone membranes. Synthesis, characterization and permeability evaluation , 2001 .

[23]  Ulrich S. Schubert,et al.  Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides , 1995 .

[24]  T. Shiomi,et al.  Synthesis and surface formation of three-component copolymers having polystyrene-block-poly(dimethylsiloxane) graft segments , 1995 .

[25]  T. Saegusa Organic-inorganic polymers hybrids , 1995 .

[26]  A. J. Vega,et al.  High temperature stabilization of crosslinked siloxanes glasses , 1993 .

[27]  G. Colo Controlled drug release from implantable matrices based on hydrophobia polymers , 1992 .

[28]  Usman Sorathia,et al.  Interpenetrating Polymer Networks: An Overview , 1990 .

[29]  A. Fukushima,et al.  Surface studies on poly(vinyl alcohol)—poly(dimethylsiloxane) graft copolymers , 1986 .

[30]  A. Fukushima,et al.  Synthesis of poly(vinyl alcohol)/poly(dimethylsiloxane) graft copolymer† , 1985 .

[31]  K. Imai,et al.  Synthesis of poly(vinyl alcohol)-poly(dimethylsiloxane) block copolymer , 1984 .

[32]  S. Foti,et al.  Evolution of aromatic compounds in the thermal decomposition of vinyl polymers , 1980 .

[33]  Y. Tsuchiya,et al.  Thermal decomposition products of poly(vinyl alcohol) , 1969 .

[34]  T. Thomas,et al.  Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres , 1969 .

[35]  W. Thomas Macromolecular reviews, volume 3, A. Peterlin, M. Goodman, S. Okamura, B. H. Zimm, and H. Mark, Eds., Interscience, New York, 1968, 437 pp. $15.00 , 1969 .