Expanding the role of reaction calorimetry

Abstract Reaction calorimetry, a scientific tool designed to measure the rate of heat evolution occurring during a reaction or other process, has been employed in various capacities over the last 30 years. Recently, it has expanded to find a variety of uses in process development, process safety and basic research. This review acquaints the reader with the theoretical principles, measurements that can be made and surrounding issues of reaction calorimetry, and then methodically presents the different types of investigations which have been and are being performed in various laboratories around the world. This review also considers aspects of the equipment and how these features play a role in the quality and type of data obtained. The mathematical solution(s) to the energy balance in a variety of cases is presented along with examples of their use in the literature

[1]  Jean-Louis Gustin,et al.  Thermal stability screening and reaction calorimetry. Application to runaway reaction hazard assessment and process safety management , 1993 .

[2]  Wang Yun,et al.  Method for correcting the time lag of a conduction calorimeter and its application , 1988 .

[3]  José M. Asua,et al.  Parameter estimation in emulsion copolymerization using reaction calorimeter data , 1995 .

[4]  T. Flanagan,et al.  The thermodynamic properties of the niobium-hydrogen system measured by reaction calorimetry , 1991 .

[5]  J. J. Sharkey,et al.  Process safety testing program for reducing risks associated with large scale chemical manufacturing operations , 1992 .

[6]  T. Flanagan,et al.  Thermodynamics and isotope effects of the vanadium–hydrogen system using differential heat conduction calorimetry , 1990 .

[7]  L. Paduano,et al.  Physico - chemical characterization of some surfactants in aqueous solution and their interaction with α- cyclodextrin , 1995 .

[8]  F. Hayes,et al.  Enthalpies of formation of solid NiCr and NiV alloys by direct reaction calorimetry , 1995 .

[9]  A. Kaifer,et al.  Calorimetric studies on the complexation of several ferrocene derivatives by α- and β-cyclodextrin. Effects of urea on the thermodynamic parameters , 1995 .

[10]  W. Frankvoort,et al.  Design and use of a dynamic controlled adiabatic liquid-phase reaction calorimeter , 1977 .

[11]  L. R. Williams,et al.  Reaction calorimetry : a powerful tool , 1991 .

[12]  R. Castanet Application of reaction calorimetry to metallic systems , 1994 .

[13]  K. Reichert,et al.  Temperature oscillation calorimetry in stirred tank reactors with variable heat transfer , 1994 .

[14]  P. Cardillo Calorimetric data for hazard process assessment: alkene epoxidation with peracids , 1994 .

[15]  Hengzhong Zhang,et al.  Calorimetry of electrode reaction under linear sweep-current polarization , 1995 .

[16]  P. Carr,et al.  On the Temperature Resolution of Thermistors , 1974 .

[17]  B. Wayne Bequette Operability analysis of an exothermic semi-batch reactor , 1996 .

[18]  Francis Stoessel Experimental study of thermal hazards during the hydrogenation of aromatic nitro compounds , 1993 .

[19]  Thermal and Kinetic Design Data from a Bench-Scale Heatflow Calorimeter , 1978 .

[20]  A. Kossoy,et al.  Specific features of kinetics evaluation in calorimetric studies of runaway reactions , 1995 .

[21]  R. Frauenfelder New automatic heat flow calorimeter. , 1978, The Review of scientific instruments.

[22]  J. Steinbach,et al.  Determination and assessment of the characteristic values for the evaluation of the thermal safety of chemical processes , 1989 .

[23]  Alan J. Rein,et al.  Process development utilizing advanced technologies: the RC1 reaction calorimeter, the multifunctional SimuSolv software, and the ReactIR reaction analysis system , 1992, Other Conferences.

[24]  J. Leiza,et al.  On-line calorimetric control of emulsion polymerization reactors , 1996 .

[25]  R. Landau,et al.  Enantioselective Catalysis: Influence of Conversion and Bulk Diffusion Limitations on Selectivity in the Hydrogenation of Ethyl Pyruvate , 1995 .

[26]  L. Hansen,et al.  Heat-loss corrections for small isoperibol-calorimeter reaction vessels☆ , 1975 .

[27]  J. Gachon,et al.  Enthalpies of formation of RuGe compounds and of the Gerich RuGe liquid by direct reaction calorimetry , 1995 .

[28]  T. Flanagan,et al.  Thermodynamic characterization of the ZrNiH system by reaction calorimetry and p-c-t measurements , 1990 .

[29]  T. J. Snee,et al.  Determination of the thermokinetic parameters of an exothermic reaction using isothermal, adiabatic and temperature-programmed calorimetry in conjunction with spectrophotometry , 1993 .

[30]  J. Wilkerson,et al.  A calorimeter for neutron flux measurement , 1991 .

[31]  R. Landau,et al.  A RE-EXAMINATION OF PRESSURE EFFECTS ON ENANTIOSELECTIVITY IN ASYMMETRIC CATALYTIC HYDROGENATION , 1996 .

[32]  E. Sudoł,et al.  Details of the emulsion polymerization of styrene using a reaction calorimeter , 1996 .

[33]  O. J. Kleppa,et al.  Standard enthalpies of formation of some borides of Ce, Pr, Nd and Gd by high-temperature reaction calorimetry , 1995 .

[34]  Delbert J. Eatough,et al.  Isothermal high pressure flow calorimeter , 1976 .

[35]  J. Sempere,et al.  Heat flow reaction calorimetry under reflux conditions , 1993 .

[36]  H. Søeberg,et al.  Optimal data aquisition for heat flow calorimeter , 1984 .

[37]  I. Marison,et al.  On-line detection of baseline variations through torque measurements in isothermal reaction calorimeters☆ , 1995 .

[38]  D. King,et al.  Calorimetric measurement of catalytic surface reaction heat: CO oxidation on Pt{110} , 1995 .

[39]  R. Riesen,et al.  Reaction calorimetry for the development of chemical reactions , 1987 .

[40]  R. Castanet,et al.  Thermodynamic behaviour of metallic melts at high dilution according to the associated solution model , 1994 .

[41]  K. Prz.,et al.  Ostwalds Klassiker der exakten Wissenschaften , 1906 .

[42]  Timothy F. L. McKenna,et al.  Joint use of calorimetry, densimetry and mathematical modelling for multiple component polymerizations , 1996 .

[43]  K. Wiberg,et al.  A microprocessor-controlled system for precise measurement of temperature changes. Determination of the enthalpies of hydrolysis of some polyoxygenated hydrocarbons , 1979 .

[44]  F. Becker Thermokinetische Meßmethoden: Thermokinetische Meßmethoden , 1968 .

[45]  C. Bergman,et al.  Thermodynamic functions and structure of gallium + tellurium liquid alloys , 1977 .

[46]  Karl-Heinz Reichert,et al.  Bestimmung kinetischer Konstanten der radikalischen Polymerisation mittels adiabatischer Reaktionskalorimetrie unter Berücksichtigung der Molmassenverteilung , 1995 .

[47]  H. Tung,et al.  Calorimetric Investigation of an Exothermic Reaction: kinetic and Heat Flow Modeling , 1994 .

[48]  H. F. Fisher,et al.  [9] Calorimetric methods for interpreting protein—Ligand interactions☆ , 1995 .

[49]  R. Castanet,et al.  Thermodynamic Investigation of the Pd-Pb Binary Alloys , 1993 .

[50]  G. Stockton,et al.  Versatile macroscale heat flow calorimeter for the study of chemical processes , 1986 .

[51]  Ingemar Wadsö,et al.  A Flow Micro Reaction Calorimeter. , 1968 .

[52]  Jukka Seppälä,et al.  Polymerization calorimeter. Part 1. Modelling and characterization , 1995 .

[53]  S. Gronowitz,et al.  Design and Testing of a Micro Reaction Calorimeter. , 1968 .

[54]  C. Silebi,et al.  Capillary Hydrodynamic Fractionation (CHDF) as a Tool for Monitoring the Evolution of the Particle Size Distribution during Miniemulsion Polymerization , 1995 .

[55]  Calibration of a discontinuous reaction calorimeter by a set of specific transient experiments , 1991 .