Static and dynamic analysis of space frames using simple Timoshenko type elements

In this paper a finite element method for geometrically and materially non-linear analyses of space frames is described. Beams with both solid and thin-walled open cross-sections are considered. The equations of equilibrium are formulated using an updated incremental Lagrangian description. The elements developed can undergo large displacements and rotations, but the incremental rotations are assumed to be small. The material behaviour is described by elastoplastic, temperature-dependent elastoplastic and viscoplastic models with special reference to metals. Computationally, more economical formulations based on the relationship between stress resultants and generalized strain quantities are also presented. In the case of thin-walled beams the torsional behaviour is modelled using a two-parameter warping model, where the angle of twist and the axial variation of warping have independent approximations. This approach yields average warping shear strains directly from the displacement assumptions and no discrepancy between stress and strain fields exists.

[1]  V. Vlasov Thin-walled elastic beams , 1961 .

[2]  Nicholas S. Trahair,et al.  Inelastic Buckling of Simply Supported Steel I-Beams , 1975 .

[3]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .

[4]  J. C. Simo,et al.  Non‐smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms , 1988 .

[5]  Walter Wunderlich,et al.  Nonlinear analysis and elastic–plastic load‐carrying behaviour of thin‐walled spatial beam structures with warping constraints , 1986 .

[6]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[7]  J. Mottershead Warping torsion in thin‐walled open section beams using the semiloof beam element , 1988 .

[8]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[9]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[10]  Nicholas S. Trahair,et al.  Inelastic buckling of continuous steel beam-columns , 1986 .

[11]  David Murray,et al.  THREE-DIMENSIONAL LARGE DEFORMATION ANALYSIS OF THIN WALLED BEAMS , 1976 .

[12]  Olof Friberg Computation of Euler parameters from multipoint data , 1988 .

[13]  M. Crisfield A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .

[14]  Mario M. Attard,et al.  Lateral buckling analysis of beams by the FEM , 1986 .

[15]  Ekkehard Ramm,et al.  Displacement dependent pressure loads in nonlinear finite element analyses , 1984 .

[16]  John Argyris,et al.  Static and dynamic stability of nonlinear elastic systems under nonconservative forces—Natural approach , 1982 .

[17]  Theodore V. Galambos Inelastic Lateral Buckling of Beams , 1963 .

[18]  A NON-ITERATIVE NONLINEAR ANALYSIS SCHEME OF FRAMES WITH THIN-WALLED ELASTIC MEMBERS , 1987 .

[19]  Richard H. Gallagher,et al.  Finite element analysis of torsional and torsional–flexural stability problems , 1970 .

[20]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[21]  John E. Mottershead Geometric stiffness of thin-walled open section beams using a semiloof beam formulation , 1988 .

[22]  H. D. Hibbit Some follower forces and load stiffness , 1979 .

[23]  Dusan Krajcinovic A consistent discrete elements technique for thinwalled assemblages , 1969 .

[24]  G.A.O. Davies,et al.  A 3-D, co-rotational, curved and twisted beam element , 1990 .

[25]  J. C. Simo,et al.  A Geometrically-exact rod model incorporating shear and torsion-warping deformation , 1991 .

[26]  J. Argyris An excursion into large rotations , 1982 .

[27]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[28]  Stefan Messmer,et al.  Dynamic elastic‐plastic behaviour of a frame , 1988 .

[29]  Satya N. Atluri,et al.  ELASTO-PLASTIC LARGE DEFORMATION ANALYSIS OF SPACE-FRAMES: A PLASTIC-HINGE AND STRESS-BASED EXPLICIT DERIVATION OF TANGENT STIFFNESSES , 1988 .

[30]  Markku Tuomala,et al.  Modelling the Fire Behaviour of Multistorey Buildings , 1988 .

[31]  George E. Blandford,et al.  AC0 finite element formulation for thin-walled beams , 1989 .

[32]  J. F. Besseling Derivatives of deformation parameters for bar elements and their use in buckling and postbuckling analysis , 1977 .

[33]  P. S. Symonds,et al.  Vabrations and permanent displacements of a pin-ended beam deformed plastically by short pulse excitation , 1986 .

[34]  R. Kouhia On kinematical relations of spatial framed structures , 1991 .

[35]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[36]  Mahjoub El Nimeiri,et al.  Large-Deflection Spatial Buckling of Thin-Walled Beams and Frames , 1973 .

[37]  Manolis Papadrakakis,et al.  Post-buckling analysis of spatial structures by vector iteration methods , 1981 .

[38]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[39]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[40]  Tongxi Yu,et al.  Counterintuitive Behavior in a Problem of Elastic-Plastic Beam Dynamics , 1985 .

[41]  T. Hsu,et al.  The Finite Element Method in Thermomechanics , 1986 .

[42]  O. Friberg A set of parameters for finite rotations and translations , 1988 .

[43]  Yeong-Bin Yang,et al.  Yield Surfaces for I‐Sections with Bimoments , 1989 .

[44]  J. L. Krahula Analysis of bent and twisted bars using the finite element method. , 1967 .

[45]  Nicholas S. Trahair,et al.  Buckling of Inelastic I-Beams under Moment Gradient , 1975 .

[46]  Isaac Fried,et al.  Orthogonal trajectory accession to the nonlinear equilibrium curve , 1984 .

[47]  A. Hasegawa,et al.  AN INELASTIC FINITE DISPLACEMENT FORMULATION OF THIN-WALLED MEMBERS , 1987 .

[48]  K. Bathe,et al.  Large displacement analysis of three‐dimensional beam structures , 1979 .

[49]  E. Dvorkin,et al.  On a non‐linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments , 1988 .

[50]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[51]  Kuang-Han Chu,et al.  Large Deflection Buckling of Space Frames , 1972 .

[52]  Sundaramoorthy Rajasekaran,et al.  Finite Element Solution of Inelastic Beam Equations , 1973 .

[53]  H. Ziegler Principles of structural stability , 1968 .

[54]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[55]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[56]  Steen Krenk Constrained Lateral Buckling of I-Beam Gable Frames , 1990 .

[57]  P. O. Friberg Beam element matrices derived from Vlasov's theory of open thin‐walled elastic beams , 1985 .

[58]  The incremental solution of some basic problems in elastic stability , 1973 .

[59]  Rodney Hill,et al.  Some basic principles in the mechanics of solids without a natural time , 1959 .

[60]  Anil Chaudhary,et al.  On the displacement formulation of torsion of shafts with rectangular cross‐sections , 1982 .

[61]  A. Love,et al.  The Mathematical Theory of Elasticity. , 1928 .

[62]  Jerome J. Connor,et al.  Nonlinear Analysis of Elastic Framed Structures , 1968 .

[63]  Karan S. Surana,et al.  Geometrically non-linear formulation for three dimensional curved beam elements with large rotations , 1989 .

[64]  Preben Terndrup Pedersen,et al.  Analysis Procedure for Space Frames with Material and Geometrical Nonlinearities , 1986 .

[65]  C. Rankin,et al.  THE USE OF PROJECTORS TO IMPROVE FINITE ELEMENT PERFORMANCE , 1988 .

[66]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[67]  T. Belytschko,et al.  Large displacement, transient analysis of space frames , 1977 .

[68]  S. Remseth,et al.  Nonlinear static and dynamic analysis of framed structures , 1979 .

[69]  D. W. Scharpf,et al.  On large displacement-small strain analysis of structures with rotational degrees of freedom , 1978 .