Worst-case errors in a Sobolev space setting for cubature over the sphere $S^2$

This paper studies the problem of numerical integration over the unit sphere $S^2\\subseteq\\mathbb{R}^3$ for functions in the Sobolev space $H^{3/2}(S^2)$. We consider sequences $Q_{m(n)}$, $n\\in\\mathbb{N}$, of cubature (or numerical integration) rules, where $Q_{m(n)}$ is assumed to integrate exactly all (spherical) polynomials of degree $\\leq n$, and to use $m=m(n)$ values of $f$. The cubature weights of all rules $Q_{m(n)}$ are assumed to be positive, or alternatively the sequence $Q_{m(n)}$, $n\\in\\mathbb{N}$, is assumed to have a certain local regularity property which involves the weights and the points of the rules $Q_{m(n)}$, $n\\in\\mathbb{N}$. Under these conditions it is shown that the worst-case (cubature) error, denoted by $E_{3/2}(Q_{m(n)})$, for all functions in the unit ball of the Hilbert space $H^{3/2}(S^2)$ satisfies the estimate $E_{3/2}(Q_{m(n)})\\leq c n^{-3/2}$, where the constant $c$ is a universal constant for all sequences of positive weight cubature rules. For a sequence $Q_{m(n)}$, $n\\in\\mathbb{N}$, of cubature rules that satisfies the alternative local regularity property the constant $c$ may depend on the sequence $Q_{m(n)}$, $n\\in\\mathbb{N}$. Examples of cubature rules that satisfy the assumptions are discussed.

[1]  V. I. Lebedev,et al.  Quadratures on a sphere , 1976 .

[2]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[3]  J. Korevaar,et al.  Spherical faraday cage for the case of equal point charges and chebyshev-type quadrature on the sphere , 1993 .

[4]  Bela Bajnok,et al.  Bounds for the number of nodes in Chebyshev type quadrature formulas , 1991 .

[5]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[6]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[7]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[8]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[9]  S. Lang Real and Functional Analysis , 1983 .

[10]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[11]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[12]  Béla Bajnok Construction of Designs on the 2-Sphere , 1991, Eur. J. Comb..

[13]  Manfred Reimer,et al.  Hyperinterpolation on the Sphere at the Minimal Projection Order , 2000 .

[14]  Ian H. Sloan,et al.  Constructive Polynomial Approximation on the Sphere , 2000 .

[15]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[16]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[17]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .