Systematic Unit-Memory Binary Convolutional Codes from Linear Block Codes over F2r + vF2r

Two constructions of unit-memory binary convolutional codes from linear block codes over the finite semi-local ring F2r + vF2r , where v = v, are presented. In both cases, if the linear block code is systematic, then the resulting convolutional encoder is systematic, minimal, basic and non-catastrophic. The Hamming free distance of the convolutional code is bounded below by the minimum Hamming distance of the block code. New examples of binary convolutional codes that meet the Heller upper bound for systematic codes are given. Keywords—Convolutional codes, semi-local ring, free distance, Heller bound.

[1]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[2]  Lin-nan Lee,et al.  Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[3]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[4]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[5]  Patrick Solé,et al.  Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings , 2007, IEEE Transactions on Information Theory.

[6]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[7]  Jørn Justesen,et al.  Bounds on distances and error exponents of unit memory codes , 1983, IEEE Trans. Inf. Theory.

[8]  Rolf Johannesson,et al.  Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.

[9]  Martin Bossert,et al.  From Block to Convolutional Codes using Block Distances , 2007, 2007 IEEE International Symposium on Information Theory.

[10]  W. J. Ebel A directed search approach for unit-memory convolutional codes , 1996, IEEE Trans. Inf. Theory.

[11]  Sandro Zampieri,et al.  System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.