Nonparametric Identification under Discrete Variation

This paper provides weak conditions under which there is nonparametric interval identification of local features of a structural function that depends on a discrete endogenous variable and is nonseparable in latent variates. The function delivers values of a discrete or continuous outcome and instruments may be discrete valued. Application of the analog principle leads to quantile regression based interval estimators of values and partial differences of structural functions. The results are used to investigate the nonparametric identifying power of the quarter-of-birth instruments used in Angrist and Krueger's 1991 study of the returns to schooling.

[1]  Han Hong,et al.  Parameter Set Inference in a Class of Econometric Models , 2004 .

[2]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[3]  Jeffrey A. Dubin,et al.  An Econometric Analysis of Residential Electric Appliance Holdings and Consumption , 1984 .

[4]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[5]  A. Chesher Identification in Nonseparable Models , 2003 .

[6]  M. Das Instrumental variables estimators of nonparametric models with discrete endogenous regressors , 2005 .

[7]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[8]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[9]  W. Newey,et al.  Nonparametric estimation of triangular simultaneous equations models , 1999 .

[10]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[11]  C. Roehrig,et al.  Conditions for Identification in Nonparametric and Parametic Models , 1988 .

[12]  J. S. Silva,et al.  Quantiles for Counts , 2002 .

[13]  Sokbae Lee,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003, Econometric Theory.

[14]  Z. Griliches,et al.  Industry Effects and Appropriability Measures in the Stock Markets Valuation of R&D and Patents , 1987 .

[15]  Shakeeb Khan Two-stage rank estimation of quantile index models , 2001 .

[16]  S. Lee Endogeneity in Quantile Regression Models: A Control Function Approach , 2004 .

[17]  J. Angrist,et al.  Does Compulsory School Attendance Affect Schooling and Earnings? , 1990 .

[18]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[19]  David Card Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems , 2000 .

[20]  J. Mincer,et al.  Time-Series Changes in Personal Income Inequality in the United States from 1939, with Projections to 1985 , 1972, Journal of Political Economy.

[21]  David A. Jaeger,et al.  Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak , 1995 .

[22]  B. Chiswick Income inequality: Regional analyses within a human capital framework , 1974 .

[23]  Z. Griliches Patent Statistics as Economic Indicators: a Survey , 1990 .

[24]  Rosa L. Matzkin Nonparametric Estimation of Nonadditive Random Functions , 2003 .

[25]  Jons Pinkse Nonparametric two‐step regression estimation when regressors and error are dependent , 2000 .