Reusing Preconditioners in Projection Based Model Order Reduction Algorithms

Dynamical systems are pervasive in almost all engineering and scientific applications. Simulating such systems is computationally very intensive. Hence, Model Order Reduction (MOR) is used to reduce them to a lower dimension. Most of the MOR algorithms require solving large sparse sequences of linear systems. Since using direct methods for solving such systems does not scale well in time with respect to the increase in the input dimension, efficient preconditioned iterative methods are commonly used. In one of our previous works, we have shown substantial improvements by reusing preconditioners for the parametric MOR (Singh et al. 2019). Here, we had proposed techniques for both, the non-parametric and the parametric cases, but had applied them only to the latter. We have three main contributions here. First, we demonstrate that preconditioners can be reused more effectively in the non-parametric case as compared to the parametric one. Second, we show that reusing preconditioners is an art via detailed algorithmic implementations in multiple MOR algorithms. Third and final, we demonstrate that reusing preconditioners for reducing a real-life industrial problem (of size 1.2 million), leads to relative savings of up to 64 % in the total computation time (in absolute terms a saving of 5 days).

[1]  Jan G. Korvink,et al.  Subspace recycling accelerates the parametric macro‐modeling of MEMS , 2013 .

[2]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[3]  Eric de Sturler,et al.  Preconditioning Parametrized Linear Systems , 2016, SIAM J. Sci. Comput..

[4]  Kapil Ahuja,et al.  Inexact Linear Solves in Model Reduction of Bilinear Dynamical Systems , 2019, IEEE Access.

[5]  Peter Benner,et al.  Interpolation-Based H2-Model Reduction of Bilinear Control Systems pdfsubject , 2011 .

[6]  A. Kallischko Modified Sparse Approximate Inverses (MSPAI) for Parallel Preconditioning , 2008 .

[7]  Owe Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000, Numer. Linear Algebra Appl..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[11]  Tianmin Han,et al.  Numerical Solution for Super Large Scale Systems , 2013, IEEE Access.

[12]  S. C. Buranay,et al.  Approximate Schur-Block ILU Preconditioners for Regularized Solution of Discrete Ill-Posed Problems , 2019, Mathematical Problems in Engineering.

[13]  Yong Zhang,et al.  Efficient preconditioner updates for unsymmetric shifted linear systems , 2014, Comput. Math. Appl..

[14]  Fazlollah Soleymani,et al.  A fast convergent iterative solver for approximate inverse of matrices , 2014, Numer. Linear Algebra Appl..

[15]  N. Gould,et al.  Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..

[16]  G. Flagg,et al.  Interpolation Methods for the Model Reduction of Bilinear Systems , 2012 .

[17]  Volker Mehrmann,et al.  Numerical methods for parametric model reduction in the simulation of disk brake squeal , 2016 .

[18]  Sarah Wyatt,et al.  Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs , 2012 .

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  Xingang Cao,et al.  Optimal model order reduction for parametric nonlinear systems , 2019 .

[21]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[22]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[23]  Tobias Breiten,et al.  Interpolatory Methods for Model Reduction of Large-Scale Dynamical Systems , 2013 .

[24]  Heike Faßbender,et al.  A fully adaptive rational global Arnoldi method for the model-order reduction of second-order MIMO systems with proportional damping , 2016, Math. Comput. Simul..

[25]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[26]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[27]  Kapil Ahuja,et al.  Recycling Krylov Subspaces and Preconditioners , 2011 .

[28]  Martin B. van Gijzen,et al.  IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..

[29]  Eric de Sturler,et al.  Recycling BiCGSTAB with an Application to Parametric Model Order Reduction , 2014, SIAM J. Sci. Comput..

[30]  V. Simoncini Restarted Full Orthogonalization Method for Shifted Linear Systems , 2003 .

[31]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[32]  Hai-Long Shen,et al.  The NMHSS Iterative Method for the Standard Lyapunov Equation , 2019, IEEE Access.

[33]  Luca Daniel,et al.  Parameterized model order reduction of nonlinear dynamical systems , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[34]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[35]  Lei Du,et al.  Efficient variants of the CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously , 2020, J. Comput. Appl. Math..

[36]  A. Antoulas,et al.  H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .

[37]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[38]  Peter Benner,et al.  Implicit Higher-Order Moment Matching Technique for Model Reduction of Quadratic-bilinear Systems , 2019, ArXiv.

[39]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[40]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[41]  Serkan Gugercin,et al.  Interpolatory model reduction of parameterized bilinear dynamical systems , 2017, Adv. Comput. Math..

[42]  Lei Du,et al.  Restarted Hessenberg method for solving shifted nonsymmetric linear systems , 2015, J. Comput. Appl. Math..

[43]  Joshua E. S. Socolar,et al.  Nonlinear Dynamical Systems , 2006 .

[44]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[45]  Yaolin Jiang,et al.  Interpolatory Model Order Reduction Method for Second Order Systems , 2018 .

[46]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[47]  Zhaojun Bai,et al.  Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method , 2005, SIAM J. Sci. Comput..

[48]  Suzan C. Buranay,et al.  On the two classes of high‐order convergent methods of approximate inverse preconditioners for solving linear systems , 2017, Numer. Linear Algebra Appl..

[49]  A. K. Grim-McNally Reusing and Updating Preconditioners for Sequences of Matrices , 2015 .

[50]  Serkan Gugercin,et al.  Projection methods for model reduction of large-scale dynamical systems , 2003 .

[51]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[52]  Daniela di Serafino,et al.  Efficient Preconditioner Updates for Shifted Linear Systems , 2011, SIAM J. Sci. Comput..

[53]  Kapil Ahuja,et al.  Preconditioned linear solves for parametric model order reduction , 2018, Int. J. Comput. Math..

[54]  Peter K. Kitanidis,et al.  Multipreconditioned Gmres for Shifted Systems , 2016, SIAM J. Sci. Comput..

[55]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..

[56]  Peter Benner,et al.  A Robust Algorithm for Parametric Model Order Reduction Based on Implicit Moment Matching , 2014 .

[57]  David M. Ceperley,et al.  Improved Scaling for Quantum Monte Carlo on Insulators , 2010, SIAM J. Sci. Comput..

[58]  W. Marsden I and J , 2012 .

[59]  Eric de Sturler,et al.  Recycling BiCG with an Application to Model Reduction , 2010, SIAM J. Sci. Comput..

[60]  Zhengge Huang,et al.  Some new preconditioned generalized AOR methods for solving weighted linear least squares problems , 2018 .

[61]  M. Fallah,et al.  On the Some New Preconditioned Generalized AOR Methods for Solving Weighted Linear Least Squares Problems , 2020, IEEE Access.

[62]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .