A low complexity and a low latency bit parallel systolic multiplier over GF(2/sup m/) using an optimal normal basis of type II

Using the self duality of an optimal normal basis (ONB) of type II, we present a bit parallel systolic multiplier over GF(2/sup m/), which has a low hardware complexity and a low latency. We show that our multiplier has a latency m+1 and the basic cell of our circuit design needs 5 latches (flip-flops). On the other hand, most of other multipliers of the same type have latency 3m and the basic cell of each multiplier needs 7 latches. Comparing the gates areas in each basic cell, we find that the hardware complexity of our multiplier is 25 percent reduced from the multipliers with 7 latches.

[1]  M. Benaissa,et al.  Dual basis systolic multipliers for GF(2m) , 1997 .

[2]  Chiou-Yng Lee,et al.  Low-complexity bit-parallel systolic architecture for computing AB/sup 2/+C in a class of finite field GF(2/sup m/) , 2001 .

[3]  Shyue-Win Wei A Systolic Power-Sum Circuit for GF(2^m) , 1994, IEEE Trans. Computers.

[4]  Chin-Liang Wang,et al.  Systolic array implementation of multipliers for finite fields GF(2/sup m/) , 1991 .

[5]  Keshab K. Parhi,et al.  Efficient semisystolic architectures for finite-field arithmetic , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[6]  Toshiya Itoh,et al.  Structure of Parallel Multipliers for a Class of Fields GF(2^m) , 1989, Inf. Comput..

[7]  Gordon B. Agnew,et al.  An implementation for a fast public-key cryptosystem , 2004, Journal of Cryptology.

[8]  Ian F. Blake,et al.  Finite Field Multiplier Using Redundant Representation , 2002, IEEE Trans. Computers.

[9]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[10]  Soonhak Kwon,et al.  Efficient Bit Serial Multiplication Using Optimal Normal Bases of Type II in GF (2m) , 2002, ISC.

[11]  Trieu-Kien Truong,et al.  Systolic Multipliers for Finite Fields GF(2m) , 1984, IEEE Transactions on Computers.

[12]  Chiou-Yng Lee,et al.  Bit-Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally Spaced Polynomials , 2001, IEEE Trans. Computers.

[13]  Joachim von zur Gathen,et al.  Gauss Periods and Fast Exponentiation in Finite Fields (Extended Abstract) , 1995, LATIN.

[14]  Christof Paar,et al.  Efficient Multiplier Architectures for Galois Fields GF(2 4n) , 1998, IEEE Trans. Computers.

[15]  Chin-Liang Wang,et al.  Systolic Array Implementation o Euclid's Algorithm for Inversion and Division in GF(2m) , 1998, IEEE Trans. Computers.

[16]  Elwyn R. Berlekamp,et al.  Bit-serial Reed - Solomon encoders , 1982, IEEE Transactions on Information Theory.

[17]  Berk Sunar,et al.  An Efficient Optimal Normal Basis Type II Multiplier , 2001, IEEE Trans. Computers.

[18]  M. Anwar Hasan,et al.  A New Construction of Massey-Omura Parallel Multiplier over GF(2m) , 2002, IEEE Trans. Computers.

[19]  Wei-Chang Tsai,et al.  Two systolic architectures for modular multiplication , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[20]  B. Sunar,et al.  Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[21]  Ian F. Blake,et al.  Bit Serial Multiplication in Finite Fields , 1990, SIAM J. Discret. Math..