Discrete Optimization via Simulation Using COMPASS

We propose an optimization-via-simulation algorithm, called COMPASS, for use when the performance measure is estimated via a stochastic, discrete-event simulation, and the decision variables are integer ordered. We prove that COMPASS converges to the set of local optimal solutions with probability 1 for both terminating and steady-state simulation, and for both fully constrained problems and partially constrained or unconstrained problems under mild conditions.

[1]  A. Law,et al.  A procedure for selecting a subset of size m containing the l best of k independent normal populations, with applications to simulation , 1985 .

[2]  D. Yan,et al.  Stochastic discrete optimization , 1992 .

[3]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[4]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[5]  J. P. Kelly,et al.  New advances and applications of combining simulation and optimization , 1996, Proceedings Winter Simulation Conference.

[6]  P. Spreij Probability and Measure , 1996 .

[7]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[8]  Paul Glasserman,et al.  Leadtime-Inventory Trade-Offs in Assemble-to-Order Systems , 1998, Oper. Res..

[9]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[10]  Sigrún Andradóttir,et al.  Accelerating the convergence of random search methods for discrete stochastic optimization , 1999, TOMC.

[11]  László Gerencsér,et al.  Optimization over discrete sets via SPSA , 1999, WSC '99.

[12]  Christos G. Cassandras,et al.  Ordinal optimisation and simulation , 2000, J. Oper. Res. Soc..

[13]  Yu-Chi Ho,et al.  Stochastic Comparison Algorithm for Discrete Optimization with Estimation , 1999, SIAM J. Optim..

[14]  Leyuan Shi,et al.  Nested Partitions Method for Stochastic Optimization , 2000 .

[15]  Chun-Hung Chen,et al.  Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization , 2000, Discret. Event Dyn. Syst..

[16]  Tito Homem-de-Mello,et al.  Monte Carlo Methods for Discrete Stochastic Optimization , 2001 .

[17]  Mahmoud H. Alrefaei,et al.  A modification of the stochastic ruler method for discrete stochastic optimization , 2001, Eur. J. Oper. Res..

[18]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[19]  Feng Cheng,et al.  Inventory-Service Optimization in Configure-to-Order Systems , 2002, Manuf. Serv. Oper. Manag..

[20]  Barry L. Nelson,et al.  A combined procedure for optimization via simulation , 2002, Proceedings of the Winter Simulation Conference.

[21]  Sigurdur Olafsson,et al.  Simulation optimization , 2002, Proceedings of the Winter Simulation Conference.

[22]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[23]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[24]  Barry L. Nelson,et al.  Using Ranking and Selection to "Clean Up" after Simulation Optimization , 2003, Oper. Res..

[25]  D. Simchi-Levi,et al.  On assemble-to-order systems with flexible customers , 2003 .

[26]  S. Ólafsson Two-Stage Nested Partitions Method for Stochastic Optimization , 2004 .

[27]  Sigrún Andradóttir,et al.  Simulation optimization with countably infinite feasible regions: Efficiency and convergence , 2006, TOMC.

[28]  Barry L. Nelson,et al.  Selecting the best system when systems are revealed sequentially , 2007 .