Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data

We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation with steplike initial data.

[1]  E. Kotlyarov Soliton asymptotics of nondecreasing solutions of nonlinear completely integrable evolution equations , 1994 .

[2]  G. Teschl,et al.  On the Cauchy problem for the Kortewegde Vries equation with steplike finite-gap initial data II. Perturbations with finite moments , 2011 .

[3]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  D. J. Needham,et al.  The large-time development of the solution to an initial-value problem for the Korteweg de Vries equation: I. Initial data has a discontinuous expansive step , 2008 .

[5]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[6]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[7]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[8]  Gerald Teschl,et al.  Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators, Second Edition , 2014 .

[9]  A. B. D. Monvel,et al.  Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition on the Half-Line , 2009 .

[10]  G. Teschl,et al.  Long-Time Asymptotics for the Korteweg–de Vries Equation via Nonlinear Steepest Descent , 2008, 0807.5041.

[11]  G. Teschl,et al.  Long-Time Asymptotics of the Toda Lattice for Decaying Initial Data Revisited , 2008, 0804.4693.

[12]  E. J. Hruslov ASYMPTOTICS OF THE SOLUTION OF THE CAUCHY PROBLEM FOR THE KORTEWEG-de VRIES EQUATION WITH INITIAL DATA OF STEP TYPE , 1976 .

[13]  A. Rybkin Spatial Analyticity of Solutions to Integrable Systems. I. The KdV Case , 2011, 1109.6084.

[14]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[15]  G. Teschl,et al.  Long-time asymptotics for the Toda lattice in the soliton region , 2007, 0711.2793.

[16]  G. Teschl,et al.  On the Cauchy problem for the Korteweg–de Vries equation with steplike finite-gap initial data: I. Schwartz-type perturbations , 2008, 0812.4003.

[17]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[18]  R. Sharipov,et al.  Asymptotics at t→∞ of the solution to the Cauchy problem for the Korteweg-de Vries equation in the class of potentials with finite-gap behavior as x→±∞ , 1989 .

[19]  A. Gurevich,et al.  Decay of Initial Discontinuity in the Korteweg-de Vries Equation , 1973 .

[20]  G. Teschl,et al.  Long-time asymptotics of perturbed finite-gap Korteweg-de Vries solutions , 2010, 1008.3698.

[21]  A. Minakov,et al.  Riemann–Hilbert problem to the modified Korteveg–de Vries equation: Long-time dynamics of the steplike initial data , 2010 .

[22]  P. Deift,et al.  The collisionless shock region for the long-time behavior of solutions of the KdV equation , 1994 .

[23]  S. Venakides LONG TIME ASYMPTOTICS OF THE KORTEWEG-DE VRIES EQUATION , 1986 .

[24]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[25]  V. Karpman An asymptotic solution of the Korteweg-De Vries equation , 1967 .

[26]  M. Ablowitz,et al.  Asymptotic Solutions of the Korteweg-deVries Equation , 1977 .