Multi-dimensional CFD Simulations of Knocking Combustion in a CFR Engine

[1]  G. T. Kalghatgi,et al.  WITHDRAWN: Developments in internal combustion engines and implications for combustion science and future transport fuels , 2014 .

[2]  Roda Bounaceur,et al.  Laminar burning velocity of gasolines with addition of ethanol , 2014 .

[3]  Bo Zhang,et al.  Lifecycle optimized ethanol-gasoline blends for turbocharged engines , 2016 .

[4]  Chih-Jen Sung,et al.  Laminar flame speeds of primary reference fuels and reformer gas mixtures , 2004 .

[5]  R. Reitz,et al.  Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models , 1995 .

[6]  S. Davis,et al.  Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons , 1998 .

[7]  O. Le Corre,et al.  Modeling of In-cylinder Pressure Oscillations under Knocking Conditions: Introduction to Pressure Envelope Curve , 2005 .

[8]  Alberto Broatch,et al.  Development of a Virtual CFR Engine Model for Knocking Combustion Analysis , 2018 .

[9]  William R. Leppard,et al.  The chemical origin of fuel octane sensitivity , 1990 .

[10]  Gautam Kalghatgi,et al.  The outlook for fuels for internal combustion engines , 2014 .

[11]  James S. Wallace,et al.  A fast response thermocouple for internal combustion engine surface temperature measurements , 2010 .

[12]  Gautam Kalghatgi,et al.  Fuel Anti-Knock Quality - Part I. Engine Studies. , 2001 .

[13]  A. Konnov,et al.  Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures , 2011 .

[14]  N. Peters,et al.  A level set based flamelet model for the prediction of combustion in spark ignition engines , 2005 .

[15]  U. Spicher,et al.  Detection of knocking combustion using simultaneously high-speed schlieren cinematography and multi optical fiber technique , 1991 .

[16]  Jihad Badra,et al.  Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures , 2017 .

[17]  Ö. Gülder Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels , 1984 .

[18]  Tianfeng Lu,et al.  Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene , 2007 .

[19]  Yu Zhang,et al.  Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis , 2017 .

[20]  Gautam Kalghatgi,et al.  On Knock Intensity and Superknock in SI Engines , 2017 .

[21]  Rolf D. Reitz,et al.  Spark Ignition Engine Combustion Modeling Using a Level Set Method with Detailed Chemistry , 2006 .

[22]  Tiziano Faravelli,et al.  Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity , 2006 .

[23]  H. Im,et al.  Effects of fuel injection parameters on the performance of homogeneous charge compression ignition at low-load conditions , 2016 .

[24]  Rolf D. Reitz,et al.  Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics , 2007 .

[25]  Tianfeng Lu,et al.  A Reduced Mechanism for High-Temperature Oxidation of Biodiesel Surrogates , 2010 .

[26]  Thierry Poinsot,et al.  LES study of deflagration to detonation mechanisms in a downsized spark ignition engine , 2015 .

[27]  S. Merola,et al.  CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine , 2016 .

[28]  Tianfeng Lu,et al.  Linear time reduction of large kinetic mechanisms with directed relation graph: N-Heptane and iso-octane , 2006 .

[29]  Gautam Kalghatgi,et al.  Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines , 2005 .

[30]  C. Westbrook,et al.  Chemical kinetics of octane sensitivity in a spark-ignition engine , 2017 .

[31]  P. Senecal,et al.  Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry , 2003 .

[32]  Wheeler G. Lovell,et al.  Knocking Characteristics of Hydrocarbons , 1948 .

[33]  S M Aceves,et al.  A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines , 2005 .

[34]  E. Lyford-Pike,et al.  Thermal boundary layer thickness in the cylinder of a spark-ignition engine , 1984 .

[35]  Rolf D. Reitz,et al.  Modeling ignition and combustion in spark-ignition engines using a level set method , 2003 .

[36]  Gautam Kalghatgi,et al.  Fuel/Engine Interactions , 2013 .

[37]  M. Metghalchi,et al.  Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature , 1982 .

[38]  P. K. Senecal,et al.  Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement , 2014 .

[39]  Paul G. Arias,et al.  Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations , 2017 .

[40]  Andy Yates,et al.  Correlating Auto-Ignition Delays And Knock-Limited Spark-Advance Data For Different Types Of Fuel , 2005 .

[41]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[42]  Andrew B. Mansfield,et al.  Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities , 2015 .

[43]  C. Westbrook,et al.  Kinetic modeling of gasoline surrogate components and mixtures under engine conditions , 2011 .

[44]  Pinaki Pal,et al.  Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications. , 2016 .

[45]  G. T. Kalghatgi,et al.  Fuel Anti-Knock Quality- Part II. Vehicle Studies - How Relevant is Motor Octane Number (MON) in Modern Engines? , 2001 .

[46]  Mohamed I. Hassan,et al.  Flame/Stretch Interactions of Premixed Fuel-Vapor/O/N Flames , 2000 .

[47]  Tianfeng Lu,et al.  Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model , 2012 .

[48]  Gautam Kalghatgi,et al.  Fuel effects on knock, heat releases and CARS temperatures in a spark ignition engine , 1995 .

[49]  Pinaki Pal,et al.  Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines , 2016 .

[50]  Stephen Ciatti,et al.  Computational Fluid Dynamics Simulation of Gasoline Compression Ignition , 2015 .

[51]  Robert W. Dibble,et al.  Effect of Timing and Location of Hotspot on Super Knock during Pre-ignition , 2017 .

[52]  Mohand Tazerout,et al.  A new indicator for knock detection in gas SI engines , 2003 .

[53]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[54]  R. McCormick,et al.  Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization , 2016 .

[55]  G. Adomeit,et al.  Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure ☆ , 1997 .

[56]  Tianfeng Lu,et al.  Strategies for mechanism reduction for large hydrocarbons: n-heptane , 2008 .

[57]  Andrew B. Mansfield,et al.  A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities , 2015 .

[58]  Gequn Shu,et al.  LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine , 2017 .

[59]  S. Richard,et al.  LES prediction and analysis of knocking combustion in a spark ignition engine , 2015 .

[60]  P. K. Senecal,et al.  Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations , 2016 .

[61]  Eric Pomraning,et al.  Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines using a Reduced Chemical Mechanism , 2013 .

[62]  Roger Sierens,et al.  Local heat flux measurements in a hydrogen and methane spark ignition engine with a thermopile sensor , 2009 .

[63]  R. Reitz,et al.  A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling , 1997 .

[64]  S. Som,et al.  Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions , 2016 .

[65]  S. Mani Sarathy,et al.  Impact of fuel molecular structure on auto-ignition behavior – Design rules for future high performance gasolines , 2017 .

[66]  Andrew B. Mansfield,et al.  A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations , 2015 .

[67]  Kamal Kumar,et al.  Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures , 2007 .