High-k (k=30) amorphous hafnium oxide films from high rate room temperature deposition

Amorphous hafnium oxide (HfOx) is deposited by sputtering while achieving a very high k∼30. Structural characterization suggests that the high k is a consequence of a previously unreported cubiclike short range order in the amorphous HfOx (cubic k∼30). The films also possess a high electrical resistivity of 1014 Ω cm, a breakdown strength of 3 MV cm−1, and an optical gap of 6.0 eV. Deposition at room temperature and a high deposition rate (∼25 nm min−1) makes these high-k amorphous HfOx films highly advantageous for plastic electronics and high throughput manufacturing.

[1]  Jane P. Chang,et al.  Development of hafnium based high-k materials—A review , 2011 .

[2]  Jeong Hwan Kim,et al.  Monocliniclike local atomic structure in amorphous ZrO2 thin film , 2010 .

[3]  A. Flewitt,et al.  Stability of thin film transistors incorporating a zinc oxide or indium zinc oxide channel deposited by a high rate sputtering process , 2009 .

[4]  J. Ekerdt,et al.  Atomic Layer Deposition of Lanthanum Stabilized Amorphous Hafnium Oxide Thin Films , 2009 .

[5]  D. Chan,et al.  Cubic-Structured $\hbox{HfO}_{2}$ With Optimized Doping of Lanthanum for Higher Dielectric Constant , 2009, IEEE Electron Device Letters.

[6]  S. Lhostis,et al.  Addition of yttrium into HfO2 films: Microstructure and electrical properties , 2009 .

[7]  Kimoon Lee,et al.  Transparent and Photo‐stable ZnO Thin‐film Transistors to Drive an Active Matrix Organic‐Light‐ Emitting‐Diode Display Panel , 2009 .

[8]  J. Robertson Maximizing performance for higher K gate dielectrics , 2008 .

[9]  Z. Hou,et al.  Structural and electronic properties of cubic HfO2 surfaces , 2008 .

[10]  P. Barquinha,et al.  High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper , 2008, IEEE Electron Device Letters.

[11]  Sunghwan Lee,et al.  Amorphous IZO-based transparent thin film transistors , 2008 .

[12]  Shelby Forrester Nelson,et al.  Stable ZnO thin film transistors by fast open air atomic layer deposition , 2008 .

[13]  Pedro Barquinha,et al.  High k dielectrics for low temperature electronics , 2008 .

[14]  Pedro Barquinha,et al.  Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs , 2007 .

[15]  S. Wagner,et al.  A comparison of zinc oxide thin-film transistors on silicon oxide and silicon nitride gate dielectrics , 2007 .

[16]  Mircea Modreanu,et al.  Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films , 2006 .

[17]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[18]  Jen‐Sue Chen,et al.  Investigation of the Hf -Based Gate Dielectrics Deposited by Reactive Sputtering in Oxygen or Nitrogen Atmosphere , 2006 .

[19]  D. Vanderbilt,et al.  Structural and dielectric properties of amorphous ZrO2 and HfO2 , 2006, cond-mat/0606340.

[20]  B. E. White,et al.  Impact of Zr addition on properties of atomic layer deposited HfO2 , 2006 .

[21]  K. O’Grady,et al.  GRAIN SIZE EFFECTS IN METALLIC THIN FILMS PREPARED USING A NEW SPUTTERING TECHNOLOGY , 2005 .

[22]  B. Servet,et al.  Solid phase crystallisation of HfO2 thin films , 2005 .

[23]  W. Macdonald,et al.  Engineered Films for Display Technologies , 2004 .

[24]  J. Robertson High dielectric constant oxides , 2004 .

[25]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[26]  G. Rignanese,et al.  First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium , 2004 .

[27]  Hideo Hosono,et al.  All Oxide transparent MISFET using high- k dielectrics gates , 2004 .

[28]  Y. Kuo Thin Film Transistors : Materials and Processes , 2003 .

[29]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[30]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[31]  John Robertson,et al.  Band offsets and Schottky barrier heights of high dielectric constant oxides , 2002 .

[32]  Jane P. Chang,et al.  Dielectric property and thermal stability of HfO2 on silicon , 2002 .

[33]  Mikko Ritala,et al.  Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors , 2002 .

[34]  D. E. Mentley,et al.  State of flat-panel display technology and future trends , 2002, Proc. IEEE.

[35]  D. Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002, cond-mat/0202454.

[36]  R. Manory,et al.  Structural modifications of hafnium oxide films prepared by ion beam assisted deposition under high energy oxygen irradiation , 2001 .

[37]  G. Fagherazzi,et al.  The local structure characterization and resulting phase-transition mechanism of amorphous ZrO2 , 1995, Journal of Materials Science.

[38]  William I. Milne,et al.  a-Si:H TFT Thin Film and Substrate Materials , 2004 .

[39]  John Robertson,et al.  Influence of ion energy and substrate temperature on the optical and electronic properties of tetrah , 1997 .

[40]  Masahiro Yoshimura,et al.  Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrothermal Conditions , 1983 .