Decidable and Undecidable Problems about Quantum Automata

We study the following decision problem: is the language recognized by a quantum finite automaton empty or nonempty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or nonstrict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata, for which it is known that strict and nonstrict thresholds both lead to undecidable problems.

[1]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[2]  J. M. Foster,et al.  Mathematical theory of automata , 1965 .

[3]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[4]  A. Bertoni The Solution of Problems Relative to Probabilistic Automata in the Frame of the Formal Languages Theory , 1974, GI Jahrestagung.

[5]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[6]  Yuri V. Matiyasevich,et al.  Decision problems for semi-Thue systems with a few rules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[7]  Alberto Bertoni,et al.  The Solution of Problems Relative to Probabilistic Automata in the Frame of the Formal Languages Theory , 1974, GI Jahrestagung.

[8]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part II: The General Decision Problem. Preliminaries for Quantifier Elimination , 1992, J. Symb. Comput..

[9]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[10]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[11]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[12]  A. L. Onishchik,et al.  Lie groups and algebraic groups , 1990 .

[13]  S. Świerczkowski A class of free rotation groups , 1994 .

[14]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[15]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[16]  A. Church Review: Emil L. Post, A Variant of a Recursively Unsolvable Problem , 1947 .

[17]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Giancarlo Mauri,et al.  Some Recursive Unsolvable Problems Relating to Isolated Cutpoints in Probabilistic Automata , 1977, ICALP.

[19]  S. Swierczkowski On a free group of rotations of the euclidean space , 1958 .

[20]  Vincent D. Blondel,et al.  Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.

[21]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[23]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[24]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[25]  Pascal Koiran,et al.  Quantum automata and algebraic groups , 2005, J. Symb. Comput..

[26]  Stan Wagon,et al.  The Banach-Tarski paradox , 1985 .

[27]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[28]  F. Su The Banach-Tarski Paradox , 1990 .