Illumination design for semiconductor backlight inspection and application extensions

High speed strobe based illumination scheme is one of the most critical factors for high throughput semiconductor defect inspection applications. HB LEDs are always the first and best options for such applications due to numerous unique advantages such as excellent spatial and temporal stability, fast responding time, large and linear intensity dynamic range and no heat issue for the extremely low duty cycle applications. For some applications where a large area is required to be illuminated simultaneously, it remains a great challenge to efficiently package a large amount of HB-LEDs in a highly confined 3D space, to generate a seamless illuminated area with high luminance efficiency and spatial uniformity. A novel 3D structured collimation lens is presented in this paper. The non-circular edge shape reduces the intensity drop at the channel boundaries, while the secondary curvatures on the top of the collimator lens efficiently guides the light into desired angular space. The number of the edges and the radius of the top surface curvature are control parameters for the system level performance and the manufacture cost trade-off. The proposed 3D structured LED collimation lens also maintains the benefits of traditional LED collimation lens such as coupling efficiency and mold manufacture capability. The applications can be extended into other non-illumination area like parallelism measurement and solar panel concentrator etc.