Solving the sum-of-ratios problem by a stochastic search algorithm

In spite of the recent progress in fractional programming, the sum-of-ratios problem remains untoward. Freund and Jarre proved that this is an NP-complete problem. Most methods overcome the difficulty using the deterministic type of algorithms, particularly, the branch-and-bound method. In this paper, we propose a new approach by applying the stochastic search algorithm introduced by Birbil, Fang and Sheu to a transformed image space. The algorithm then computes and moves sample particles in the q − 1 dimensional image space according to randomly controlled interacting electromagnetic forces. Numerical experiments on problems up to sum of eight linear ratios with a thousand variables are reported. The results also show that solving the sum-of-ratios problem in the image space as proposed is, in general, preferable to solving it directly in the primal domain.

[1]  Takahito Kuno,et al.  A branch-and-bound algorithm for maximizing the sum of several linear ratios , 2002, J. Glob. Optim..

[2]  Hiroshi Konno,et al.  Minimization of the sum of three linear fractional functions , 1999, J. Glob. Optim..

[3]  Hiroshi Konno,et al.  An outer approximation method for minimizing the product of several convex functions on a convex set , 1993, J. Glob. Optim..

[4]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[5]  Hiroshi Konno,et al.  BOND PORTFOLIO OPTIMIZATION BY BILINEAR FRACTIONAL PROGRAMMING , 1989 .

[6]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[7]  Hiroshi Konno,et al.  A Branch and Bound Algorithm for Solving Low Rank Linear Multiplicative and Fractional Programming Problems , 2000, J. Glob. Optim..

[8]  HAROLD P. BENSON Using concave envelopes to globally solve the nonlinear sum of ratios problem , 2002, J. Glob. Optim..

[9]  Y. Almogy,et al.  A Class of Fractional Programming Problems , 1971, Oper. Res..

[10]  Harold P. Benson,et al.  Global Optimization of Nonlinear Sums of Ratios , 2001 .

[11]  Hoang Tuy,et al.  A Unified Monotonic Approach to Generalized Linear Fractional Programming , 2003, J. Glob. Optim..

[12]  Toshihide Ibaraki,et al.  Parametric approaches to fractional programs , 1983, Math. Program..

[13]  J. B. G. Frenk,et al.  A new algorithm for generalized fractional programs , 1996, Math. Program..

[14]  Roland W. Freund,et al.  Solving the Sum-of-Ratios Problem by an Interior-Point Method , 2001, J. Glob. Optim..

[15]  Shu-Cherng Fang,et al.  On the Convergence of a Population-Based Global Optimization Algorithm , 2004, J. Glob. Optim..

[16]  H. P. Benson,et al.  On the Global Optimization of Sums of Linear Fractional Functions over a Convex Set , 2004 .

[17]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[18]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[19]  H. P. Benson,et al.  Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem , 2002 .

[20]  A. Cambini,et al.  On Maximizing a Sum of Ratios , 1989 .

[21]  Zbigniew Michalewicz,et al.  Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .

[22]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[23]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[24]  G. R. Wood,et al.  Multidimensional bisection applied to global optimisation , 1991 .