Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices

[1]  J. Eccles,et al.  The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs , 1958, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[2]  K L Magleby,et al.  The effect of voltage on the time course of end‐plate currents , 1972, The Journal of physiology.

[3]  K L Magleby,et al.  A quantitative description of end‐plate currents , 1972, The Journal of physiology.

[4]  B Katz,et al.  The binding of acetylcholine to receptors and its removal from the synaptic cleft , 1973, The Journal of physiology.

[5]  K L Magleby,et al.  Factors affecting the time course of decay of end‐plate currents: a possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction. , 1975, The Journal of physiology.

[6]  P. Adams Drug blockade of open end‐plate channels. , 1976, The Journal of physiology.

[7]  A. Crawford,et al.  The termination of transmitter action at the crustacean excitatory neuromuscular junction. , 1977, The Journal of physiology.

[8]  B. Twitchin,et al.  ACTION OF THE NEUROTOXIN KAINIC ACID ON HIGH AFFINITY UPTAKE OF l‐GLUTAMIC ACID IN RAT BRAIN SLICES , 1979, Journal of neurochemistry.

[9]  J. Barker,et al.  Phenobarbitone modulation of postsynaptic GABA receptor function on cultured mammalian neurons , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  D. R. Curtis,et al.  Potentiation of L‐Glutamate and L‐Aspartate Excitation of Cat Spinal Neurones by the Stereoisomers of threo‐3‐Hydroxyaspartate , 1980, Journal of neurochemistry.

[11]  R. Parsons,et al.  Voltage clamp study of fast excitatory synaptic currents in bullfrog sympathetic ganglion cells , 1980, The Journal of general physiology.

[12]  H. Rang The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells , 1981, The Journal of physiology.

[13]  D. Faber,et al.  Transmission at a central inhibitory synapse. I. Magnitude of unitary postsynaptic conductance change and kinetics of channel activation. , 1982, Journal of neurophysiology.

[14]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[15]  B. Hille Ionic channels of excitable membranes , 2001 .

[16]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[17]  P W Gage,et al.  Inhibitory post‐synaptic currents in rat hippocampal CA1 neurones. , 1984, The Journal of physiology.

[18]  M. Mayer,et al.  The action of N‐methyl‐D‐aspartic acid on mouse spinal neurones in culture. , 1985, The Journal of physiology.

[19]  R. Dingledine,et al.  Gamma‐aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. , 1985, The Journal of physiology.

[20]  A. Roberts,et al.  Dual‐component amino‐acid‐mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. , 1985, The Journal of physiology.

[21]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[22]  O. Krishtal,et al.  Excitatory amino acid receptors in hippocampal neurons: Kainate fails to desensitize them , 1986, Neuroscience Letters.

[23]  J. Macdonald,et al.  Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. , 1987, Journal of neurophysiology.

[24]  S. Cull-Candy,et al.  Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons , 1987, Nature.

[25]  C. Stevens,et al.  Glutamate activates multiple single channel conductances in hippocampal neurons , 1987, Nature.

[26]  L. Nowak,et al.  N‐methyl‐D‐aspartate‐activated channels of mouse central neurones in magnesium‐free solutions. , 1988, The Journal of physiology.

[27]  L. Trussell,et al.  Rapid desensitization of glutamate receptors in vertebrate central neurons. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Miller,et al.  Multiple sites for the regulation of the N-methyl-D-aspartate receptor. , 1988, Molecular pharmacology.

[29]  B. Bean,et al.  Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Lester,et al.  Synaptic activation of N‐methyl‐D‐aspartate receptors in the Schaffer collateral‐commissural pathway of rat hippocampus. , 1988, The Journal of physiology.

[31]  G. Westbrook,et al.  Slow excitatory postsynaptic currents mediated by N‐methyl‐D‐aspartate receptors on cultured mouse central neurones. , 1988, The Journal of physiology.

[32]  R. Nicoll,et al.  The coupling of neurotransmitter receptors to ion channels in the brain. , 1988, Science.

[33]  G. Collingridge,et al.  Excitatory amino acid receptors in the vertebrate central nervous system. , 1989, Pharmacological reviews.

[34]  J. Lambert,et al.  Effects of new non‐N‐methyl‐D‐aspartate antagonists on synaptic transmission in the in vitro rat hippocampus. , 1989, The Journal of physiology.

[35]  M. Dichter,et al.  Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. , 1989, Science.

[36]  L. Trussell,et al.  Glutamate receptor desensitization and its role in synaptic transmission , 1989, Neuron.

[37]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[38]  M. Mayer 12 – Activation and Desensitization of Glutamate Receptors in Mammalian CNS , 1989 .

[39]  L. Vyklický,et al.  Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine , 1989, Nature.

[40]  M. Mayer,et al.  Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Nicoll,et al.  Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. , 1990, The Journal of physiology.

[42]  R. Nicoll,et al.  Analysis of excitatory synaptic action in pyramidal cells using whole‐cell recording from rat hippocampal slices. , 1990, The Journal of physiology.

[43]  G. Westbrook,et al.  Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents , 1990, Nature.

[44]  M Benveniste,et al.  Concentration-jump experiments with NMDA antagonists in mouse cultured hippocampal neurons. , 1990, Journal of neurophysiology.