On superlinear problems without the Ambrosetti and Rabinowitz condition

Abstract Existence and multiplicity results are obtained for superlinear p -Laplacian equations without the Ambrosetti and Rabinowitz condition. To overcome the difficulty that the Palais–Smale sequences of the Euler–Lagrange functional may be unbounded, we consider the Cerami sequences. Our results extend the recent results of Miyagaki and Souto [O. Miyagaki, M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008) 3628–3638].

[1]  Petru Jebelean,et al.  Variational and topological methods for Dirichlet problems with -Laplacian. , 2001 .

[2]  Olímpio H. Miyagaki,et al.  Superlinear problems without Ambrosetti and Rabinowitz growth condition , 2008 .

[3]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[4]  Liu Shu Infinitely Many Solutions for a Superlinear Elliptic Equation , 2003 .

[5]  Existence and multiplicity of solutions for semilinear elliptic systems , 1994 .

[6]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[7]  Wenming Zou,et al.  On a Schrodinger equation with periodic potential and spectrum point zero , 2003 .

[8]  Thomas Bartsch,et al.  Infinitely many solutions of a symmetric Dirichlet problem , 1993 .

[9]  刘嘉荃 THE MORSE INDEX OF A SADDLE POINT , 1989 .

[10]  Jiaquan Liu,et al.  Remarks on multiple nontrivial solutions for quasi-linear resonant problems , 2001 .

[11]  Zhi-Qiang Wang,et al.  On the Ambrosetti-Rabinowitz Superlinear Condition , 2004 .

[12]  M. Willem Minimax Theorems , 1997 .

[13]  Zhaoli Liu,et al.  Sign-changing solutions of nonlinear elliptic equations , 2008 .

[14]  Fei Fang,et al.  Nontrivial solutions of superlinear p-Laplacian equations , 2009 .

[15]  Kung-Ching Chang Infinite Dimensional Morse Theory , 1993 .

[16]  Marco Degiovanni,et al.  Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity , 2007 .

[17]  Jing Zeng,et al.  Ground states of nonlinear Schrödinger equations with potentials , 2006 .

[18]  C. VARIATIONAL ELLIPTIC PROBLEMS WHICH ARE NONQUADRATIC AT INFINITY , 2022 .

[19]  Linking and existence results for perturbations of the p -Laplacian , 2000 .

[20]  Zhi-Qiang Wang On a superlinear elliptic equation , 1991 .

[21]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[22]  Wenming Zou,et al.  Variant fountain theorems and their applications , 2001 .

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[24]  Michael Struwe,et al.  On multivortex solutions in Chern-Simons gauge theory , 1998 .

[25]  K. Perera Nontrivial critical groups in $p$-Laplacian problems via the Yang index , 2003 .

[26]  Shibo Liu,et al.  Existence of solutions to a superlinear p-Laplacian equation , 2001 .

[27]  M. Schechter,et al.  Superlinear Problems , 2004 .

[28]  Michel Willem,et al.  Applications of local linking to critical point theory , 1995 .

[29]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[30]  Thomas Bartsch,et al.  Critical point theory for asymptotically quadratic functionals and applications to problems with resonance , 1997 .