Embedding Henselian fields into power series

Abstract Every Henselian field of residue characteristic 0 admits a truncation-closed embedding in a field of generalised power series (possibly, with a factor set). As corollaries we obtain the Ax–Kochen–Ershov theorem and an extension of Mourgues and Ressayre's theorem: every ordered field which is Henselian in its natural valuation has an integer part. We also give some results for the mixed and the finite characteristic cases.

[1]  Paulo Ribenboim,et al.  Théorie des valuations , 1964 .

[2]  G. Whaples Galois cohomology of additive polynomial and $n$-${\rm th}$power mappings of fields , 1957 .

[3]  F. Kuhlmann Dense subfields of henselian fields, and integer parts , 2010, 1003.5681.

[4]  R. Tennant Algebra , 1941, Nature.

[5]  Additive Polynomials and Their Role in the Model Theory of Valued Fields , 2005 .

[6]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[7]  Lou van den Dries,et al.  Erratum to "Fields of surreal numbers and exponentiation" (Fund. Math. 167 (2001), 173-188) , 2001 .

[8]  Antongiulio Fornasiero Integration on surreal numbers , 2004 .

[9]  Simon Kochen,et al.  The model theory of local fields , 1975 .

[10]  N. L. Alling,et al.  On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .

[11]  Irving Kaplansky Selected papers and other writings , 1995 .

[12]  J. Neukirch,et al.  The Theory of Valuations , 1999 .

[13]  A. Prestel,et al.  On places of algebraic function fields. , 1984 .

[14]  S. Kochen,et al.  Diophantine Problems Over Local Fields I , 1965 .

[15]  F. J. Rayner,et al.  An algebraically closed field , 1968, Glasgow Mathematical Journal.

[16]  Sedki Boughattas Resultats Optimaux sur L'Existenece d'une Partie Entiere dans les Corps Ordonnes , 1993, J. Symb. Log..

[17]  Steffen Lempp,et al.  Of the association for symbolic logic , 2004 .

[18]  Jean-Pierre Ressayre,et al.  Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..

[19]  Salma Kuhlmann,et al.  Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields. , 2006 .

[20]  S. Verblunsky,et al.  On Positive Polynomials , 1945 .

[21]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[22]  Franz-Viktor Kuhlmann,et al.  Value groups, residue fields, and bad places of rational function fields , 2004, 1003.5685.

[23]  S. Kochen,et al.  Diophantine Problems Over Local Fields: III. Decidable Fields , 1966 .

[24]  Peter Roquette,et al.  Formally P-Adic Fields , 1984 .

[25]  Chapter 9 Hensel ’ s Lemma 9 . 1 Equivalent forms of Hensel ’ s Lemma , 2022 .

[26]  Philip Ehrlich Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.

[27]  Lou van den Dries,et al.  Fields of surreal numbers and exponentiation , 2001 .

[28]  Irving Kaplansky,et al.  Maximal fields with valuations, II , 1942 .