Embedding Henselian fields into power series
暂无分享,去创建一个
[1] Paulo Ribenboim,et al. Théorie des valuations , 1964 .
[2] G. Whaples. Galois cohomology of additive polynomial and $n$-${\rm th}$power mappings of fields , 1957 .
[3] F. Kuhlmann. Dense subfields of henselian fields, and integer parts , 2010, 1003.5681.
[4] R. Tennant. Algebra , 1941, Nature.
[5] Additive Polynomials and Their Role in the Model Theory of Valued Fields , 2005 .
[6] Charles N. Delzell,et al. Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .
[7] Lou van den Dries,et al. Erratum to "Fields of surreal numbers and exponentiation" (Fund. Math. 167 (2001), 173-188) , 2001 .
[8] Antongiulio Fornasiero. Integration on surreal numbers , 2004 .
[9] Simon Kochen,et al. The model theory of local fields , 1975 .
[10] N. L. Alling,et al. On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .
[11] Irving Kaplansky. Selected papers and other writings , 1995 .
[12] J. Neukirch,et al. The Theory of Valuations , 1999 .
[13] A. Prestel,et al. On places of algebraic function fields. , 1984 .
[14] S. Kochen,et al. Diophantine Problems Over Local Fields I , 1965 .
[15] F. J. Rayner,et al. An algebraically closed field , 1968, Glasgow Mathematical Journal.
[16] Sedki Boughattas. Resultats Optimaux sur L'Existenece d'une Partie Entiere dans les Corps Ordonnes , 1993, J. Symb. Log..
[17] Steffen Lempp,et al. Of the association for symbolic logic , 2004 .
[18] Jean-Pierre Ressayre,et al. Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..
[19] Salma Kuhlmann,et al. Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields. , 2006 .
[20] S. Verblunsky,et al. On Positive Polynomials , 1945 .
[21] R.K. Guy,et al. On numbers and games , 1978, Proceedings of the IEEE.
[22] Franz-Viktor Kuhlmann,et al. Value groups, residue fields, and bad places of rational function fields , 2004, 1003.5685.
[23] S. Kochen,et al. Diophantine Problems Over Local Fields: III. Decidable Fields , 1966 .
[24] Peter Roquette,et al. Formally P-Adic Fields , 1984 .
[25] Chapter 9 Hensel ’ s Lemma 9 . 1 Equivalent forms of Hensel ’ s Lemma , 2022 .
[26] Philip Ehrlich. Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.
[27] Lou van den Dries,et al. Fields of surreal numbers and exponentiation , 2001 .
[28] Irving Kaplansky,et al. Maximal fields with valuations, II , 1942 .