Progress in triboluminescence-based smart optical sensor system

Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated.

[1]  S. Chu,et al.  The mechanism and characteristics of ZnS-based phosphor powders , 2004 .

[2]  D. R. Vij,et al.  Luminescence of solids , 1998 .

[3]  J. F. Suyver,et al.  Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn^(2+) , 2001 .

[4]  Yves Berthaud,et al.  Damage measurements in concrete via an ultrasonic technique. Part I experiment , 1991 .

[5]  Martin Kemp,et al.  Squeezing light out of crystals: triboluminescent sensors , 1999, Smart Structures.

[6]  G. Glass,et al.  Survey of Recent Research Results for New Fluor Materials , 1999 .

[7]  K. Sohn,et al.  Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu, Dy, Nd) , 2004 .

[8]  V. Bulović,et al.  Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals. , 2009, Nano letters.

[9]  K R Maser,et al.  CONDITION ASSESSMENT OF TRANSPORTATION INFRASTRUCTURE USING GROUND-PENETRATING RADAR. TECHNOLOGY REVIEW , 1996 .

[10]  Victor J. Abbruscato,et al.  Optical and Electrical Properties of SrAl2 O 4 : Eu2 + , 1971 .

[11]  Masayasu Ohtsu,et al.  Nondestructive evaluation of defects in concrete by quantitative acoustic emission and ultrasonics , 1998 .

[12]  P. O’Hara,et al.  Turning on the Light: Lessons from Luminescence , 2005 .

[13]  S. McKeever,et al.  Spectroscopic characterization of minerals and their surfaces , 1990 .

[14]  I. C. Sage,et al.  Triboluminescent materials for structural damage monitoring , 2001 .

[15]  L. Sodomka Triboluminescence of Silicon Carbide and Other Uncommon Materials , 1971, October 16.

[16]  Chao-Nan Xu,et al.  Dynamic visualization of stress distribution by mechanoluminescence image , 2000 .

[17]  N. Atari,et al.  Piezoluminescence and thermoluminescence spectral shifts in γ-irradiated KBr and KCl crystals , 1986 .

[18]  J. Zink,et al.  Triboluminescence and the dynamics of crystal fracture , 1980 .

[19]  Amara Loulizi,et al.  Development of Ground Penetrating Radar Signal Modeling and Implementation for Transportation Infrastructure , 2001 .

[20]  S. Nabulsi,et al.  Imaging of electromagnetic waves for bridge deck evaluation , 2004, 2004 IEEE Electro/Information Technology Conference.

[21]  M. Rosenblatt,et al.  Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition , 1992 .

[22]  G. Gillies,et al.  Remote thermometry with thermographic phosphors: Instrumentation and applications , 1997 .

[23]  J. B. Czirr,et al.  Spectroscopic analysis of proton-induced fluorescence from yttrium orthosilicate , 1993 .

[24]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[25]  T. Phillipson,et al.  Triboluminescence and the potential of fracture surfaces , 2004 .

[26]  Udaya B. Halabe,et al.  Impulse radar reflection waveforms of simulated reinforced concrete bridge decks , 1994 .

[27]  Gallagher,et al.  Optical properties of manganese-doped nanocrystals of ZnS. , 1994, Physical review letters.

[28]  I. Samuel,et al.  The solid-state photoluminescent quantum yield of triboluminescent materials , 2001 .

[29]  Marc O. Eberhard,et al.  IMAGING OF REINFORCED CONCRETE: STATE-OF-THE-ART REVIEW , 1995 .

[30]  Nicholas J. Carino,et al.  Health monitoring of civil infrastructures , 2003 .

[31]  Alan D. Kersey,et al.  Fiber optic sensors in concrete structures: a review , 1996 .

[32]  J. B. Birks,et al.  Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations , 1951 .

[33]  B. P. Chandra Luminescence induced by moving dislocations in crystals , 1996 .

[34]  M. Hovater,et al.  Experimental evidence of triboluminescence induced by hypervelocity impact , 2006 .

[35]  B. P. Chandra,et al.  Mechanoluminescence response to the plastic flow of coloured alkali halide crystals , 2010 .

[36]  William A. Hollerman,et al.  Tribolumininescence and its Application to Space-Based Damage Sensors , 2003 .

[37]  S. W. Allison,et al.  Measurement of triboluminescence and proton half brightness dose for ZnS:Mn , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[38]  B. P. Chandra,et al.  Characteristics of a.c. electroluminescence in thin film ZnS : Mn display devices , 2004 .

[39]  B. P. Chandra,et al.  Dislocation models of mechanoluminescence in γ- and X-irradiated alkali halides crystals , 1982 .

[40]  R. Mach,et al.  Physical Concepts of High‐Field, Thin‐Film Electroluminescence Devices , 1982 .

[41]  G. Chapman An improved image-intensifier spectrograph for recording triboluminescent spectra , 1982 .

[42]  C. T. Butler Room-Temperature Deformation Luminescence in Alkali Halides , 1966 .

[43]  Philip R Boudreaux,et al.  Comparison of fluorescence properties for single crystal and polycrystalline YAG:Ce , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[44]  Linda M. Sweeting,et al.  Triboluminescence with and without Air , 2001 .

[45]  R. Measures Structural Monitoring with Fibre Optic Technology , 2001 .

[46]  D. Ila,et al.  Proton-induced fluorescence properties of terbium gallium garnet , 1995 .

[47]  Chao-Nan Xu,et al.  Direct view of stress distribution in solid by mechanoluminescence , 1999 .

[48]  Udaya B. Halabe,et al.  Condition assessment of reinforced concrete structures using electromagnetic waves , 1993 .

[49]  Seema Singh,et al.  Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals , 1996 .

[50]  J. H. Bungey,et al.  SUB-SURFACE RADAR TESTING OF CONCRETE: A REVIEW , 2004 .

[51]  P. K. Singh,et al.  Deformation-induced excitation of the luminescence centres in coloured alkali halide crystals , 2009 .

[52]  Shiro Kubo,et al.  Visualization of contact stress distribution using infrared stress-measurement system , 1997, Defense, Security, and Sensing.

[53]  G. Reynolds Piezoluminescence from a ferroelectric polymer and quartz , 1997 .

[54]  Chao-Nan Xu,et al.  Preparation and characteristics of highly triboluminescent ZnS film , 1999 .

[55]  S. R. Vadera,et al.  Multicolor electroluminescent devices using doped ZnS nanocrystals , 2004 .

[56]  Chao-Nan Xu,et al.  Artificial skin to sense mechanical stress by visible light emission , 1999 .

[57]  M. Forde,et al.  Review of NDT methods in the assessment of concrete and masonry structures , 2001 .

[58]  I. C. Sage,et al.  Getting light through black composites: embedded triboluminescent structural damage sensors , 2001 .

[59]  B. P. Chandra,et al.  Classification of Mechanoluminescence , 1995 .

[60]  B. P. Chandra,et al.  Theory of Mechanoluminescence Kinetics in Coloured Alkali Halide Crystals , 1992 .

[61]  Chao-Nan Xu,et al.  Luminescence induced by elastic deformation of ZnS:Mn nanoparticles , 2010 .

[62]  Stephen W. Allison,et al.  Effects of proton irradiation on triboluminescent materials such as ZnS:Mn , 2005 .

[63]  L. M. Sweeting,et al.  An improved method for determining triboluminescence spectra , 1985 .

[64]  S. W. Allison,et al.  Changes in half brightness dose due to preparation pressure for YAG:Ce , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[65]  P. Tománek,et al.  Near‐field measurement of ZnS:Mn nanocrystal and bulk thin‐film electroluminescent devices , 2008, Journal of microscopy.

[66]  Oral Büyüköztürk,et al.  Radar imaging of concrete specimens for non-destructive testing , 1997 .