Unit interval editing is fixed-parameter tractable

Given a graph~$G$ and integers $k_1$, $k_2$, and~$k_3$, the unit interval editing problem asks whether $G$ can be transformed into a unit interval graph by at most $k_1$ vertex deletions, $k_2$ edge deletions, and $k_3$ edge additions. We give an algorithm solving this problem in time $2^{O(k\log k)}\cdot (n+m)$, where $k := k_1 + k_2 + k_3$, and $n, m$ denote respectively the numbers of vertices and edges of $G$. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time $O(4^k \cdot (n + m))$. Another result is an $O(6^k \cdot (n + m))$-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time $O(6^k \cdot n^6)$.

[1]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[2]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[3]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[4]  Robert Weismantel,et al.  An FPTAS for Minimizing Indefinite Quadratic Forms over Integers in Polyhedra , 2015, SODA.

[5]  Christian Komusiewicz,et al.  Measuring Indifference: Unit Interval Vertex Deletion , 2010, WG.

[6]  Michal Pilipczuk,et al.  A Subexponential Parameterized Algorithm for Proper Interval Completion , 2015, SIAM J. Discret. Math..

[7]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[8]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[9]  Anthony Perez,et al.  Polynomial kernels for Proper Interval Completion and related problems , 2011, FCT.

[10]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[11]  Hans L. Bodlaender,et al.  On Intervalizing K-colored Graphs for DNA Physical Mapping , 1996, Discret. Appl. Math..

[12]  Jayme Luiz Szwarcfiter,et al.  Normal Helly circular-arc graphs and its subclasses , 2013, Discret. Appl. Math..

[13]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[14]  Yixin Cao,et al.  Forbidden induced subgraphs of normal Helly circular-arc graphs: Characterization and detection , 2017, Discret. Appl. Math..

[15]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[16]  Michal Pilipczuk,et al.  A Subexponential Parameterized Algorithm for Proper Interval Completion , 2014, ESA.

[17]  Yixin Cao,et al.  Unit Interval Vertex Deletion: Fewer Vertices are Relevant , 2018, J. Comput. Syst. Sci..

[18]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[19]  Fedor V. Fomin,et al.  A Polynomial Kernel for Proper Interval Vertex Deletion , 2012, ESA.

[20]  Yixin Cao,et al.  Linear Recognition of Almost Interval Graphs , 2014, SODA.

[21]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[22]  Yixin Cao,et al.  Chordal Editing is Fixed-Parameter Tractable , 2014, Algorithmica.

[23]  Roded Sharan,et al.  A polynomial approximation algorithm for the minimum fill-in problem , 1998, STOC '98.

[24]  Pim van 't Hof,et al.  Proper Interval Vertex Deletion , 2012, Algorithmica.

[25]  Jørgen Bang-Jensen,et al.  On chordal proper circular arc graphs , 1994, Discret. Math..

[26]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[27]  Roded Sharan,et al.  A Polynomial Approximation Algorithm for the Minimum Fill-In Problem , 2000, SIAM J. Comput..

[28]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[29]  Michel Habib,et al.  Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations , 2008, ICALP.

[30]  Yixin Cao Direct and Certifying Recognition of Normal Helly Circular-Arc Graphs in Linear Time , 2014, FAW.

[31]  Yunlong Liu,et al.  Edge deletion problems: Branching facilitated by modular decomposition , 2015, Theor. Comput. Sci..

[32]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[33]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[34]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.