Approximation of eigenfunctions in kernel-based spaces
暂无分享,去创建一个
[1] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[2] W. A. Light. n -WIDTHS IN APPROXIMATION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 7) , 1985 .
[3] Witold Pogorzelski,et al. Integral equations and their applications , 1966 .
[4] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[5] Holger Wendland,et al. Approximation by positive definite kernels , 2002 .
[6] R. Schaback. Native Hilbert Spaces for Radial Basis Functions I , 1999 .
[7] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[8] Holger Wendland,et al. Inverse and saturation theorems for radial basis function interpolation , 2002, Math. Comput..
[9] Roberto Cavoretto,et al. An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels , 2014, Numerical Algorithms.
[10] Andrew D. Back,et al. Radial Basis Functions , 2001 .
[11] Robert Schaback,et al. A Newton basis for Kernel spaces , 2009, J. Approx. Theory.
[12] Holger Wendland,et al. Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.
[13] W. Pogorzelski,et al. Integral Equations and their Applications, Vol. I. , 1968 .
[14] Joseph W. Jerome,et al. On n-Widths in Sobolev Spaces and Applications to Elliptic Boundary Value Problems* , 1970 .
[15] M. A. Krasnoselʹskii,et al. Approximate Solution of Operator Equations , 1972 .
[16] Hongwei Sun,et al. Application of integral operator for regularized least-square regression , 2009, Math. Comput. Model..
[17] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[18] R. S. Ismagilov. On n-dimensional diameters of compacts in a Hilbert space , 1968 .
[19] F. J. Narcowich,et al. Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .
[20] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[21] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[22] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[23] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[24] Guanrong Chen,et al. Approximate Solutions of Operator Equations , 1997 .
[25] Robert Schaback,et al. Approximation in Sobolev Spaces by Kernel Expansions , 2002, J. Approx. Theory.
[26] Robert Schaback,et al. Bases for kernel-based spaces , 2011, J. Comput. Appl. Math..
[27] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[28] R. Schaback,et al. Recursive Kernels , 2009 .
[29] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[30] Chen Zhi-xiang. Error estimates for scattered data interpolation on spheres , 2009 .
[31] Stefano De Marchi,et al. A new stable basis for radial basis function interpolation , 2013, J. Comput. Appl. Math..
[32] Holger Wendland,et al. Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..