Approximation of eigenfunctions in kernel-based spaces

Kernel-based methods in Numerical Analysis have the advantage of yielding optimal recovery processes in the “native” Hilbert space ℋ$\mathcal {H}$ in which they are reproducing. Continuous kernels on compact domains have an expansion into eigenfunctions that are both L2-orthonormal and orthogonal in ℋ$\mathcal {H}$ (Mercer expansion). This paper examines the corresponding eigenspaces and proves that they have optimality properties among all other subspaces of ℋ$\mathcal {H}$. These results have strong connections to n-widths in Approximation Theory, and they establish that errors of optimal approximations are closely related to the decay of the eigenvalues. Though the eigenspaces and eigenvalues are not readily available, they can be well approximated using the standard n-dimensional subspaces spanned by translates of the kernel with respect to n nodes or centers. We give error bounds for the numerical approximation of the eigensystem via such subspaces. A series of examples shows that our numerical technique via a greedy point selection strategy allows to calculate the eigensystems with good accuracy.

[1]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[2]  W. A. Light n -WIDTHS IN APPROXIMATION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 7) , 1985 .

[3]  Witold Pogorzelski,et al.  Integral equations and their applications , 1966 .

[4]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[5]  Holger Wendland,et al.  Approximation by positive definite kernels , 2002 .

[6]  R. Schaback Native Hilbert Spaces for Radial Basis Functions I , 1999 .

[7]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[8]  Holger Wendland,et al.  Inverse and saturation theorems for radial basis function interpolation , 2002, Math. Comput..

[9]  Roberto Cavoretto,et al.  An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels , 2014, Numerical Algorithms.

[10]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[11]  Robert Schaback,et al.  A Newton basis for Kernel spaces , 2009, J. Approx. Theory.

[12]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.

[13]  W. Pogorzelski,et al.  Integral Equations and their Applications, Vol. I. , 1968 .

[14]  Joseph W. Jerome,et al.  On n-Widths in Sobolev Spaces and Applications to Elliptic Boundary Value Problems* , 1970 .

[15]  M. A. Krasnoselʹskii,et al.  Approximate Solution of Operator Equations , 1972 .

[16]  Hongwei Sun,et al.  Application of integral operator for regularized least-square regression , 2009, Math. Comput. Model..

[17]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[18]  R. S. Ismagilov On n-dimensional diameters of compacts in a Hilbert space , 1968 .

[19]  F. J. Narcowich,et al.  Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .

[20]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[21]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[22]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[23]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[24]  Guanrong Chen,et al.  Approximate Solutions of Operator Equations , 1997 .

[25]  Robert Schaback,et al.  Approximation in Sobolev Spaces by Kernel Expansions , 2002, J. Approx. Theory.

[26]  Robert Schaback,et al.  Bases for kernel-based spaces , 2011, J. Comput. Appl. Math..

[27]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[28]  R. Schaback,et al.  Recursive Kernels , 2009 .

[29]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[30]  Chen Zhi-xiang Error estimates for scattered data interpolation on spheres , 2009 .

[31]  Stefano De Marchi,et al.  A new stable basis for radial basis function interpolation , 2013, J. Comput. Appl. Math..

[32]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..