Flatness Based Control of a Suspension System: A GPI Observer Approach
暂无分享,去创建一个
[1] Cédric Join,et al. Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..
[2] Zhiqiang Gao,et al. Theory vs. practice: the challenges from industry , 2004, Proceedings of the 2004 American Control Conference.
[3] Keum-Shik Hong,et al. Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning , 2002 .
[4] Jingqing Han,et al. From PID to Active Disturbance Rejection Control , 2009, IEEE Trans. Ind. Electron..
[5] Vicente Feliú Batlle,et al. Robust Σ–Δ modulation-based sliding mode observers for linear systems subject to time polynomial inputs , 2011, Int. J. Syst. Sci..
[6] Zhiqiang Gao,et al. Active disturbance rejection control: a paradigm shift in feedback control system design , 2006, 2006 American Control Conference.
[7] J. M. González-Miranda,et al. Synchronization of Chaotic Oscillators , 2011 .
[8] A. Isidori. Nonlinear Control Systems , 1985 .
[9] Steffen Waldherr,et al. Conditions for the existence of a flat input , 2008, Int. J. Control.
[10] M. Fliess,et al. Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[11] Argyrios C. Zolotas,et al. LQG control for the integrated tilt and active lateral secondary suspension in high speed railway vehicles , 2010, IEEE ICCA 2010.
[12] Sunil K. Agrawal,et al. Differentially Flat Systems , 2004 .
[13] Thomas Kailath,et al. Linear Systems , 1980 .
[14] Hebertt Sira-Ramírez,et al. Synchronization of Chaotic oscillators by Means of Generalized Proportional Integral Observers , 2010, Int. J. Bifurc. Chaos.
[15] M. Fliess,et al. Correcteurs proportionnels-intégraux généralisés , 2002 .
[16] M. Fliess,et al. Flatness and defect of non-linear systems: introductory theory and examples , 1995 .
[17] M. Fliess,et al. Intelligent PID controllers , 2008, 2008 16th Mediterranean Conference on Control and Automation.