Flatness Based Control of a Suspension System: A GPI Observer Approach

Abstract We propose a robust, flatness based, approach for active regulation of a railway vehicle suspension system externally perturbed by track irregularities. A simplified perturbed input–to–flat–output model for the vehicle model, which is differentially flat, is established. The observer-based control scheme uses the simplified model considering all the additive state-dependent terms and the influence of external disturbance inputs, as a single lumped unknown but bounded disturbance signal. The proposed GPI observer simultaneously estimates the required flat output associated phase variables allowing to complete the linear feedback loop via on-line disturbance cancellation. Simulations reveal the effectiveness of the approach.

[1]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..

[2]  Zhiqiang Gao,et al.  Theory vs. practice: the challenges from industry , 2004, Proceedings of the 2004 American Control Conference.

[3]  Keum-Shik Hong,et al.  Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning , 2002 .

[4]  Jingqing Han,et al.  From PID to Active Disturbance Rejection Control , 2009, IEEE Trans. Ind. Electron..

[5]  Vicente Feliú Batlle,et al.  Robust Σ–Δ modulation-based sliding mode observers for linear systems subject to time polynomial inputs , 2011, Int. J. Syst. Sci..

[6]  Zhiqiang Gao,et al.  Active disturbance rejection control: a paradigm shift in feedback control system design , 2006, 2006 American Control Conference.

[7]  J. M. González-Miranda,et al.  Synchronization of Chaotic Oscillators , 2011 .

[8]  A. Isidori Nonlinear Control Systems , 1985 .

[9]  Steffen Waldherr,et al.  Conditions for the existence of a flat input , 2008, Int. J. Control.

[10]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[11]  Argyrios C. Zolotas,et al.  LQG control for the integrated tilt and active lateral secondary suspension in high speed railway vehicles , 2010, IEEE ICCA 2010.

[12]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[13]  Thomas Kailath,et al.  Linear Systems , 1980 .

[14]  Hebertt Sira-Ramírez,et al.  Synchronization of Chaotic oscillators by Means of Generalized Proportional Integral Observers , 2010, Int. J. Bifurc. Chaos.

[15]  M. Fliess,et al.  Correcteurs proportionnels-intégraux généralisés , 2002 .

[16]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[17]  M. Fliess,et al.  Intelligent PID controllers , 2008, 2008 16th Mediterranean Conference on Control and Automation.