Towards a general theory of special functions

A list of a number of natural developments for the field of algebraic manipulation is given. Then the prospects for a general theory of functions defined by ordinary differential equations are discussed. The claim is made that recent developments in mathematics indicate that it should be possible to algorithmically generate many properties of solutions to differential equations. Such a theory is preferable to a less general effort to make algebraic manipulation systems knowledgeable about the usual special functions (e.g. exponential, hypergeometric).

[1]  Joel Moses,et al.  Algebraic simplification: a guide for the perplexed , 1971, CACM.

[2]  J. Coates,et al.  Construction of rational functions on a curve , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  B. F. Caviness On Canonical Forms and Simplification , 1970, JACM.

[4]  Robert W. Floyd Toward Interactive Design of Correct Programs , 1971, IFIP Congress.

[5]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[6]  Joel Moses,et al.  Symbolic integration the stormy decade , 1971, SYMSAC '71.

[7]  Richard J. Fateman ESSAYS IN ALGEBRAIC SIMPLIFICATION , 1972 .

[8]  R. Risch The problem of integration in finite terms , 1969 .

[9]  Joel Moses The integration of a class of special functions with the Risch algorithm , 1969, SIGS.

[10]  M. Rosenlicht,et al.  On the explicit solvability of certain transcendental equations , 1969 .

[11]  M. H. Protter,et al.  THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .

[12]  Yvette Amice Conjecture de Schanuel sur la transcendance d'exponentielles (d'après James AX) , 1971 .

[13]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[14]  M. A. Ostrowski Sur l'intégrabilité élémentaire de quelques classes d'expressions , 1945 .

[15]  William H. Jefferys Automated algebraic manipulation in celestial mechanics , 1971, CACM.

[16]  Paul S. Wang EVALUATION OF DEFINITE INTEGRALS BY SYMBOLIC MANIPULATION , 1971 .

[17]  D. Richardson Solution of the identity problem for integral exponential functions , 1969 .

[18]  Alexandre Ostrowski Sur les relations algébriques entre les intégrales indéfinies , 1946 .

[19]  G. Hardy The Integration of Functions of a Single Variable , Nature.

[20]  E. R. Kolchin,et al.  Algebraic Groups and Algebraic Dependence , 1968 .

[21]  Michael Atiyah,et al.  Hyperbolic differential equations and algebraic geometry , 1968 .