Computational complexity and 3-manifolds and zombies

We show the problem of counting homomorphisms from the fundamental group of a homology $3$-sphere $M$ to a finite, non-abelian simple group $G$ is #P-complete, in the case that $G$ is fixed and $M$ is the computational input. Similarly, deciding if there is a non-trivial homomorphism is NP-complete. In both reductions, we can guarantee that every non-trivial homomorphism is a surjection. As a corollary, for any fixed integer $m \ge 5$, it is NP-complete to decide whether $M$ admits a connected $m$-sheeted covering. Our construction is inspired by universality results in topological quantum computation. Given a classical reversible circuit $C$, we construct $M$ so that evaluations of $C$ with certain initialization and finalization conditions correspond to homomorphisms $\pi_1(M) \to G$. An intermediate state of $C$ likewise corresponds to a homomorphism $\pi_1(\Sigma_g) \to G$, where $\Sigma_g$ is a pointed Heegaard surface of $M$ of genus $g$. We analyze the action on these homomorphisms by the pointed mapping class group $\text{MCG}_*(\Sigma_g)$ and its Torelli subgroup $\text{Tor}_*(\Sigma_g)$. By results of Dunfield-Thurston, the action of $\text{MCG}_*(\Sigma_g)$ is as large as possible when $g$ is sufficiently large; we can pass to the Torelli group using the congruence subgroup property of $\text{Sp}(2g,\mathbb{Z})$. Our results can be interpreted as a sharp classical universality property of an associated combinatorial $(2+1)$-dimensional TQFT.

[1]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[2]  William P. Thurston,et al.  Finite covers of random 3-manifolds , 2006 .

[3]  E. Witten,et al.  Topological gauge theories and group cohomology , 1990 .

[4]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[5]  Akshay Venkatesh,et al.  Hurwitz monodromy and full number fields , 2014, Algebra & Number Theory.

[6]  P. Hall,et al.  THE EULERIAN FUNCTIONS OF A GROUP , 1936 .

[7]  P. Olum Non-Abelian Cohomology and Van Kampen's Theorem , 1958 .

[8]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[9]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[10]  Greg Kuperberg,et al.  How Hard Is It to Approximate the Jones Polynomial? , 2009, Theory Comput..

[11]  Dennis Johnson,et al.  The structure of the Torelli group I : A finite set of generators for J , 1983 .

[12]  É. Goursat,et al.  Sur les substitutions orthogonales et les divisions régulières de l'espace , 2022 .

[13]  Gustav Nordh,et al.  The Complexity of Counting Solutions to Systems of Equations over Finite Semigroups , 2004, COCOON.

[14]  Matthias Aschenbrenner,et al.  Decision problems for 3-manifolds and their fundamental groups , 2014, 1405.6274.

[15]  B. Poonen UNDECIDABLE PROBLEMS: A SAMPLER , 2012, 1204.0299.

[16]  Régis Barbanchon,et al.  On unique graph 3-colorability and parsimonious reductions in the plane , 2004, Theor. Comput. Sci..

[17]  Kenneth A. Ribet,et al.  on l-adic representations attached to modular forms II , 1985, Glasgow Mathematical Journal.

[18]  W. Lickorish,et al.  An Introduction to Knot Theory , 1997 .

[19]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[20]  J. Mennicke Zur Theorie der Siegelschen Modulgruppe , 1965 .

[21]  Jean-Pierre Serre Sous-groupes d’indice fini dans SL(n,Z) , 2003 .

[22]  D. Freed,et al.  Chern-Simons theory with finite gauge group , 1991, hep-th/9111004.

[23]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[24]  Eric C. Rowell,et al.  Two paradigms for topological quantum computation , 2008, 0803.1258.

[25]  Applying TQFT to count regular coverings of Seifert 3-manifolds , 2011, 1110.0186.

[26]  Greg Kuperberg,et al.  Coloring invariants of knots and links are often intractable , 2019, Algebraic & Geometric Topology.

[27]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[28]  B. H. Neumann,et al.  Some Remarks on Infinite Groups , 1937 .

[29]  Greg Kuperberg INVOLUTORY HOPF ALGEBRAS AND 3-MANIFOLD INVARIANTS , 1990 .

[30]  Michael H. Freedman,et al.  The Two-Eigenvalue Problem and Density¶of Jones Representation of Braid Groups , 2002 .

[31]  K. Bauer,et al.  A generalized Goursat lemma , 2011, 1109.0024.

[32]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[33]  Greg Kuperberg,et al.  Quantum computation with Turaev–Viro codes , 2010, 1002.2816.

[34]  Alexander Russell,et al.  The complexity of solving equations over finite groups , 2002 .

[35]  Carlos Mochon Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .

[36]  B.R. Donald,et al.  On the complexity of computing the homology type of a triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[37]  V. Turaev Quantum invariants of knots and three manifolds , 1994 .

[38]  William M. Kantor,et al.  The mathematics of perfect shuffles , 1983 .

[39]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[40]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[41]  Greg Kuperberg,et al.  Denseness and Zariski denseness of Jones braid representations , 2009, 0909.1881.

[42]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[43]  J. Serre,et al.  Sous-groupes d'indice fini dans $SL\left( {n,Z} \right)$ , 1964 .

[44]  Joseph Maher,et al.  Random Heegaard splittings , 2008, 0809.4881.

[45]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[46]  Alexander Russell,et al.  Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups , 2012, ArXiv.