Boosting Zn||I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer

[1]  Yoon-Sok Kang,et al.  High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries , 2021, ACS Energy Letters.

[2]  Zhengnan Tian,et al.  Controlled Deposition of Zinc‐Metal Anodes via Selectively Polarized Ferroelectric Polymers , 2021, Advanced materials.

[3]  T. Ma,et al.  Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery , 2021, Carbon.

[4]  P. He,et al.  Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery , 2021, Advanced materials.

[5]  L. Archer,et al.  Stabilizing metal battery anodes through the design of solid electrolyte interphases , 2021 .

[6]  Y. Liu,et al.  Establishing High-Performance Quasi-Solid Zn/I2 Batteries with Alginate-Based Hydrogel Electrolytes. , 2021, ACS applied materials & interfaces.

[7]  Long Chen,et al.  Fluorinated interphase enables reversible aqueous zinc battery chemistries , 2021, Nature Nanotechnology.

[8]  Changbao Zhu,et al.  Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies , 2021 .

[9]  Yanglong Hou,et al.  Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries , 2021, Advanced Functional Materials.

[10]  M. Srinivasan,et al.  Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries , 2021 .

[11]  Shubin Yang,et al.  Ultrafast Zinc–Ion–Conductor Interface toward High‐Rate and Stable Zinc Metal Batteries , 2021, Advanced Energy Materials.

[12]  Jihong Yu,et al.  A highly stable and flexible zeolite electrolyte solid-state Li–air battery , 2021, Nature.

[13]  Tongchao Liu,et al.  Rejuvenating dead lithium supply in lithium metal anodes by iodine redox , 2021, Nature Energy.

[14]  Zhijie Wang,et al.  Electrolyte Design for In Situ Construction of Highly Zn2+‐Conductive Solid Electrolyte Interphase to Enable High‐Performance Aqueous Zn‐Ion Batteries under Practical Conditions , 2021, Advanced materials.

[15]  C. Zhi,et al.  Enhanced Redox Kinetics and Duration of Aqueous I2/I− Conversion Chemistry by MXene Confinement , 2021, Advanced materials.

[16]  David M. Reed,et al.  Crossroads in the renaissance of rechargeable aqueous zinc batteries , 2021 .

[17]  Tingting Liu,et al.  A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion , 2021, Nature communications.

[18]  C. Zhi,et al.  Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities. , 2020, Angewandte Chemie.

[19]  Miaomiao Liu,et al.  Iodine redox chemistry in rechargeable batteries. , 2020, Angewandte Chemie.

[20]  V. Stamenkovic,et al.  Past, present, and future of lead–acid batteries , 2020, Science.

[21]  P. He,et al.  A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long‐Life Aqueous Zinc–Iodide Batteries , 2020, Advanced materials.

[22]  Miaomiao Liu,et al.  Rational Modulation of Carbon Fibers for High‐Performance Zinc–Iodine Batteries , 2020, Advanced Sustainable Systems.

[23]  Chunsheng Wang,et al.  Designing Dendrite‐Free Zinc Anodes for Advanced Aqueous Zinc Batteries , 2020, Advanced Functional Materials.

[24]  Guozhao Fang,et al.  Zn/MnO2 battery chemistry with dissolution-deposition mechanism , 2020 .

[25]  Zhiqiang Niu,et al.  Materials chemistry for rechargeable zinc-ion batteries. , 2020, Chemical Society reviews.

[26]  R. Lan,et al.  Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery , 2020, Energy Storage Materials.

[27]  Yongming Sun,et al.  Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries , 2020 .

[28]  Dipan Kundu,et al.  Scientific Challenges for the Implementation of Zn-Ion Batteries , 2020 .

[29]  Jiang Zhou,et al.  A Sieve‐Functional and Uniform‐Porous Kaolin Layer toward Stable Zinc Metal Anode , 2020, Advanced Functional Materials.

[30]  Jun Lu,et al.  Cobalt in lithium-ion batteries , 2020, Science.

[31]  Kangli Wang,et al.  A high energy efficiency and long life aqueous Zn–I2 battery , 2020 .

[32]  Jiang Zhou,et al.  Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[33]  L. Archer,et al.  Reversible epitaxial electrodeposition of metals in battery anodes , 2019, Science.

[34]  Hongkyung Lee,et al.  High-energy lithium metal pouch cells with limited anode swelling and long stable cycles , 2019, Nature Energy.

[35]  Zhijie Wang,et al.  Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes , 2019, Energy Storage Materials.

[36]  G. Cui,et al.  Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase , 2019, Energy & Environmental Science.

[37]  Wei Wang,et al.  A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density. , 2018, Angewandte Chemie.

[38]  C. Zhi,et al.  Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries , 2018, Advanced Energy Materials.

[39]  Zhihao Yuan,et al.  A sustainable aqueous Zn-I2 battery , 2018, Nano Research.

[40]  Haixia Li,et al.  Rechargeable aqueous zinc-iodine batteries: pore confining mechanism and flexible device application. , 2018, Chemical communications.

[41]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[42]  Jun Chen,et al.  Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities , 2017, Nature Communications.

[43]  Guoming Weng,et al.  Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries , 2017 .

[44]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[45]  Kirill Okhotnikov,et al.  Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals , 2016, Journal of Cheminformatics.

[46]  Yunhui Huang,et al.  Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage , 2016 .

[47]  Jun Chen,et al.  Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. , 2015, Nano letters.

[48]  M. Elimelech,et al.  Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. , 2013, ACS applied materials & interfaces.

[49]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[50]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[51]  Chunsheng Wang,et al.  Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number , 2010 .

[52]  M. Armand,et al.  Building better batteries , 2008, Nature.

[53]  Lei Jiang,et al.  Definition of Superhydrophobic States , 2007 .

[54]  Hiroshi Ishiguro,et al.  Thermal stability of poly(vinylidene fluoride) films pre-annealed at various temperatures , 2007 .

[55]  Seung M. Oh,et al.  Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells , 1998 .

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[59]  Jihoon Kim,et al.  Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li–S batteries , 2021 .

[60]  David Quéré,et al.  Superhydrophobic states , 2003, Nature materials.