Systems biology impact on antiepileptic drug discovery

[1]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[2]  J. Lopreato,et al.  General system theory : foundations, development, applications , 1970 .

[3]  B. Fredholm,et al.  New targets for drug action: is high selectivity always beneficial? , 1990, Trends in pharmacological sciences.

[4]  W. Löscher,et al.  Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? , 1994, Epilepsy Research.

[5]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[6]  R. Macdonald Is there a mechanistic basis for rational polypharmacy? , 1996, Epilepsy research. Supplement.

[7]  J. Drews Genomic sciences and the medicine of tomorrow , 1996, Nature Biotechnology.

[8]  H G Wieser,et al.  Commission on European Affairs: Appropriate Standards of Epilepsy Care Across Europe , 1997, Epilepsia.

[9]  W. Frankel Detecting genes in new and old mouse models for epilepsy: a prospectus through the magnifying glass , 1999, Epilepsy Research.

[10]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[12]  D. Margineanu,et al.  Levetiracetam inhibits the high-voltage-activated Ca2+ current in pyramidal neurones of rat hippocampal slices , 2001, Neuroscience Letters.

[13]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[14]  Asla Pitkänen,et al.  Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy , 2002, The Lancet Neurology.

[15]  Dieter Schmidt,et al.  New horizons in the development of antiepileptic drugs , 2002, Epilepsy Research.

[16]  V. Shkryl,et al.  Selective Blockade of N‐Type Calcium Channels by Levetiracetam , 2002, Epilepsia.

[17]  V. Alabaster,et al.  The fall and rise of in vivo pharmacology. , 2002, Trends in pharmacological sciences.

[18]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[19]  Patrick Kwan,et al.  Staged approach to epilepsy management , 2002, Neurology.

[20]  E. Ben-Menachem,et al.  Levetiracetam reduces caffeine-induced Ca2+ transients and epileptiform potentials in hippocampal neurons , 2003, NeuroReport.

[21]  D. Margineanu,et al.  Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? , 2003, Neuropharmacology.

[22]  S. Lipton Turning down, but not off , 2004, Nature.

[23]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[24]  P. Ball Theatre: Playing dirty , 2004, Nature.

[25]  B. Roth,et al.  Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia , 2004, Nature Reviews Drug Discovery.

[26]  K. Nocka,et al.  The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Wolfgang Löscher,et al.  The neurobiology of antiepileptic drugs , 2004, Nature Reviews Neuroscience.

[28]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[29]  B. Bourgeois,et al.  Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new onset epilepsy , 2004, Neurology.

[30]  Leroy Hood,et al.  The impact of systems approaches on biological problems in drug discovery , 2004, Nature Biotechnology.

[31]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[32]  Bruce L. Booth,et al.  Opinion: Prospects for productivity , 2004, Nature Reviews Drug Discovery.

[33]  T. Ban Paul Adriaan Jan Janssen, 1926–2003 , 2004, Neuropsychopharmacology.

[34]  A. Pitkänen,et al.  Large-Scale Analysis of Gene Expression in Epilepsy Research: Is Synthesis Already Possible? , 2004, Neurochemical Research.

[35]  C. Faingold Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action , 2004, Progress in Neurobiology.

[36]  Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new onset epilepsy: Report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society , 2004 .

[37]  I. Kola,et al.  Can the pharmaceutical industry reduce attrition rates? , 2004, Nature Reviews Drug Discovery.

[38]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[39]  M. Cataldi,et al.  The Antiepileptic Drug Levetiracetam Decreases the Inositol 1,4,5-Trisphosphate-Dependent [Ca2+]i Increase Induced by ATP and Bradykinin in PC12 Cells , 2005, Journal of Pharmacology and Experimental Therapeutics.

[40]  Dieter Schmidt,et al.  Drug Resistance in Epilepsy: Putative Neurobiologic and Clinical Mechanisms , 2005, Epilepsia.

[41]  B. Stockwell,et al.  Multicomponent therapeutics for networked systems , 2005, Nature Reviews Drug Discovery.

[42]  F. Sams-Dodd Target-based drug discovery: is something wrong? , 2005, Drug discovery today.

[43]  Simon K. Mencher,et al.  BMC Clinical Pharmacology BioMed Central Debate , 2005 .

[44]  Sorin Draghici,et al.  A common pattern of persistent gene activation in human neocortical epileptic foci , 2005, Annals of neurology.

[45]  S. Friend,et al.  Embracing Complexity, Inching Closer to Reality , 2005, Science's STKE.

[46]  Piotr Czapiński,et al.  Mechanisms of action of antiepileptic drugs. , 2005, Current topics in medicinal chemistry.

[47]  Péter Csermely,et al.  The efficiency of multi-target drugs: the network approach might help drug design. , 2004, Trends in pharmacological sciences.

[48]  M. Klein,et al.  γ-Vinyl GABA: comparison of neurochemical and anticonvulsant effects in mice , 2005, Journal of Neural Transmission.

[49]  S. Frantz Drug discovery: Playing dirty , 2005, Nature.

[50]  C. Davies,et al.  Anticonvulsant mechanisms for today and tomorrow. , 2005, Drug news & perspectives.

[51]  [Paul Ehrlich - founder of modern chemotherapy.]. , 2005, Klinicka mikrobiologie a infekcni lekarstvi.

[52]  W. Frankel,et al.  Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. , 2006, Human molecular genetics.

[53]  Eric J Kunkel,et al.  Systems biology in drug discovery. , 2006, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference.

[54]  Patrick Kwan,et al.  Refractory epilepsy: mechanisms and solutions , 2006, Expert review of neurotherapeutics.

[55]  Samuel F. Berkovic,et al.  Human epilepsies: interaction of genetic and acquired factors , 2006, Trends in Neurosciences.

[56]  M. Rogawski Molecular targets versus models for new antiepileptic drug discovery , 2006, Epilepsy Research.

[57]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[58]  P. Crino Gene Expression, Genetics, and Genomics in Epilepsy: Some Answers, More Questions , 2007, Epilepsia.

[59]  Rajeev Agarwal,et al.  Activity‐dependent Gene Expression Correlates with Interictal Spiking in Human Neocortical Epilepsy , 2007, Epilepsia.

[60]  D. Madhavan,et al.  Temporal lobe epilepsy: a progressive disorder? , 2007, Reviews in neurological diseases.

[61]  H. Scharfman,et al.  The neurobiology of epilepsy , 2007, Current neurology and neuroscience reports.

[62]  René H. Levy,et al.  Progress report on new antiepileptic drugs: A summary of the Eigth Eilat Conference (EILAT VIII) , 2007, Epilepsy Research.

[63]  S. Baranzini Gene expression profiling in neurological disorders , 2007, NeuroMolecular Medicine.

[64]  K. Wilcox,et al.  Mechanisms of action of antiepileptic drugs. , 2010, International review of neurobiology.

[65]  H. Beck,et al.  Diminished Response of CA1 Neurons to Antiepileptic Drugs in Chronic Epilepsy , 2007, Epilepsia.

[66]  G. Rosenberg,et al.  The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? , 2007, Cellular and Molecular Life Sciences.

[67]  Jing Qian,et al.  Masking epilepsy by combining two epilepsy genes , 2007, Nature Neuroscience.

[68]  Richard Morphy,et al.  Fragments, network biology and designing multiple ligands. , 2007, Drug discovery today.

[69]  U. Sauer,et al.  Getting Closer to the Whole Picture , 2007, Science.

[70]  M. Rogawski Brivaracetam: a rational drug discovery success story , 2008, British journal of pharmacology.

[71]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[72]  M. Dragunow The adult human brain in preclinical drug development , 2008, Nature Reviews Drug Discovery.

[73]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[74]  D. Margineanu,et al.  Anti‐convulsive and anti‐epileptic properties of brivaracetam (ucb 34714), a high‐affinity ligand for the synaptic vesicle protein, SV2A , 2008, British journal of pharmacology.

[75]  W. Lytton Computer modelling of epilepsy , 2008, Nature Reviews Neuroscience.

[76]  Randall T Peterson,et al.  Chemical biology and the limits of reductionism. , 2008, Nature chemical biology.

[77]  J. Loeb,et al.  An Animal Model to Study the Clinical Significance of Interictal Spiking , 2009, Clinical EEG and neuroscience.

[78]  Sydney S Cash,et al.  From ion channels to complex networks: magic bullet versus magic shotgun approaches to anticonvulsant pharmacotherapy. , 2009, Medical hypotheses.

[79]  Andrew L. Hopkins,et al.  Predicting promiscuity , 2009 .

[80]  L. Steinman,et al.  Systems biology and its application to the understanding of neurological diseases , 2009, Annals of neurology.

[81]  Doru Georg Margineanu,et al.  Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery , 2009, Expert opinion on drug discovery.

[82]  Andrew L. Hopkins,et al.  Drug discovery: Predicting promiscuity , 2009, Nature.

[83]  Christopher M. Overall,et al.  Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology , 2009, Trends in Neurosciences.

[84]  Samuel F. Berkovic,et al.  Mechanisms of human inherited epilepsies , 2009, Progress in Neurobiology.

[85]  S. Shorvon Drug treatment of epilepsy in the century of the ILAE: The second 50 years, 1959–2009 , 2009, Epilepsia.

[86]  Valproic acid : mechanisms of hepatotoxicity and reaction phenotyping , 2009 .

[87]  Keunwan Park,et al.  Predicting the multi-modal binding propensity of small molecules: towards an understanding of drug promiscuity. , 2009, Molecular bioSystems.

[88]  W. Löscher,et al.  New Developments in Antiepileptic Drug Resistance: An Integrative View , 2009, Epilepsy currents.

[89]  Michael J. Keiser,et al.  Predicting new molecular targets for known drugs , 2009, Nature.

[90]  C. Reid,et al.  Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels. , 2009, Archives of neurology.

[91]  R. Raedt,et al.  Effect of levetiracetam on hippocampal protein expression and cell proliferation in rats , 2010, Epilepsy Research.

[92]  A. Pitkänen Therapeutic approaches to epileptogenesis—Hope on the horizon , 2010, Epilepsia.

[93]  Wolfgang Löscher,et al.  Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research , 2010, Pharmacological Reviews.

[94]  Michael R. Johnson,et al.  Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study , 2010, Brain : a journal of neurology.

[95]  J. Loeb A human systems biology approach to discover new drug targets in epilepsy , 2010, Epilepsia.

[96]  T. Tomson,et al.  Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII) , 2015, Epilepsy Research.

[97]  M. Diederich,et al.  Molecular and Therapeutic Potential and Toxicity of Valproic Acid , 2010, Journal of biomedicine & biotechnology.

[98]  G. Avanzini,et al.  Epileptogenic ion channel mutations: From bedside to bench and, hopefully, back again , 2010, Epilepsy Research.

[99]  Doru Georg Margineanu,et al.  Epileptic hypersynchrony revisited , 2010, Neuroreport.

[100]  M. Cook,et al.  Global Expression Profiling in Epileptogenesis: Does It Add to the Confusion? , 2009, Brain pathology.

[101]  D. Geschwind,et al.  A Systems Level, Functional Genomics Analysis of Chronic Epilepsy , 2011, PloS one.

[102]  Daniel Cressey,et al.  Traditional drug-discovery model ripe for reform , 2011, Nature.

[103]  Dieter Schmidt,et al.  Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma , 2011, Epilepsia.

[104]  M. Brodie,et al.  Combining antiepileptic drugs—Rational polytherapy? , 2011, Seizure.

[105]  J. Arrowsmith Trial watch: Phase III and submission failures: 2007–2010 , 2011, Nature Reviews Drug Discovery.

[106]  D. Schmidt Antiepileptic drug discovery: Does mechanism of action matter? , 2011, Epilepsy & Behavior.

[107]  R. Gold,et al.  Anti‐inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation , 2011, British journal of pharmacology.

[108]  J. Loeb Identifying targets for preventing epilepsy using systems biology , 2011, Neuroscience Letters.

[109]  Dieter Schmidt,et al.  Efficacy of New Antiepileptic Drugs , 2011, Epilepsy currents.

[110]  Wolfgang Löscher,et al.  Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs , 2011, Seizure.

[111]  Timothy O’Connor,et al.  EMERGENT PROPERTIES , 2021 .