The relativistic Euler equations: ESI notes on their geo-analytic structures and implications for shocks in $1D$ and multi-dimensions

In this article, we provide notes that complement the lectures on the relativistic Euler equations and shocks that were given by the second author at the program Mathematical Perspectives of Gravitation Beyond the Vacuum Regime, which was hosted by the Erwin Schrodinger International Institute for Mathematics and Physics in Vienna in February, 2022. We set the stage by introducing a standard first-order formulation of the relativistic Euler equations and providing a brief overview of local well-posedness in Sobolev spaces. Then, using Riemann invariants, we provide the first detailed construction of a localized subset of the maximal globally hyperbolic developments of an open set of initially smooth, shock-forming isentropic solutions in 1D, with a focus on describing the singular boundary and the Cauchy horizon that emerges from the singularity. Next, we provide an overview of the new second-order formulation of the 3D relativistic Euler equations derived in [41], its rich geometric and analytic structures, their implications for the mathematical theory of shock waves, and their connection to the setup we use in our 1D analysis of shocks. We then highlight some key prior results on the study of shock formation and related problems. Furthermore, we provide an overview of how the formulation of the flow derived in [41] can be used to study shock formation in multiple spatial dimensions. Finally, we discuss various open problems tied to shocks.

[1]  P. Yu,et al.  On the stability of multi-dimensional rarefaction waves II: existence of solutions and applications to Riemann problem , 2023, 2305.06308.

[2]  P. Yu,et al.  On the stability of multi-dimensional rarefaction waves I: the energy estimates , 2023, 2302.09714.

[3]  T. Oliynyk,et al.  The Stability of Relativistic Fluids in Linearly Expanding Cosmologies , 2023, International Mathematics Research Notices.

[4]  Jiajie Chen,et al.  Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data I: Analysis , 2022, 2305.05660.

[5]  F. Merle,et al.  On the implosion of a compressible fluid I: Smooth self-similar inviscid profiles , 2022, Annals of Mathematics.

[6]  F. Merle,et al.  On the implosion of a compressible fluid II: Singularity formation , 2022, Annals of Mathematics.

[7]  Jared Speck,et al.  The emergence of the singular boundary from the crease in $3D$ compressible Euler flow , 2022, 2207.07107.

[8]  Xinliang An,et al.  Low regularity ill-posedness for non-strictly hyperbolic systems in three dimensions , 2022, Journal of Mathematical Physics.

[9]  S. Chaturvedi,et al.  The Inviscid Limit of Viscous Burgers at Nondegenerate Shock Formation , 2022, Annals of PDE.

[10]  Sifan Yu Rough Solutions of the Relativistic Euler Equations , 2022, 2203.11746.

[11]  Juhi Jang,et al.  Naked Singularities in the Einstein-Euler System , 2021, Annals of PDE.

[12]  Lifeng Zhao,et al.  Shock Formation of 3D Euler-Poisson System for Electron Fluid with Steady Ion Background , 2021, 2108.09972.

[13]  Matthew R. I. Schrecker,et al.  Gravitational Collapse for Polytropic Gaseous Stars: Self-Similar Solutions , 2021, Archive for Rational Mechanics and Analysis.

[14]  Sung-Jin Oh,et al.  Gradient blow-up for dispersive and dissipative perturbations of the Burgers equation , 2021, 2107.07172.

[15]  Jared Speck,et al.  The stability of simple plane-symmetric shock formation for 3D compressible Euler flow with vorticity and entropy , 2021, 2107.03426.

[16]  Shengguo Zhu,et al.  Development of singularities in the relativistic Euler equations , 2021, 2106.07467.

[17]  Theodore D. Drivas,et al.  Simultaneous Development of Shocks and Cusps for 2D Euler with Azimuthal Symmetry from Smooth Data , 2021, Annals of PDE.

[18]  Lars Andersson,et al.  On the rough solutions of 3D compressible Euler equations: an alternative proof , 2021, 2104.12299.

[19]  N. Masmoudi,et al.  Singularities and unsteady separation for the inviscid two-dimensional Prandtl system , 2021, Archive for Rational Mechanics and Analysis.

[20]  Yin Huicheng,et al.  Formation and Construction of a Multidimensional Shock Wave for the First-Order Hyperbolic Conservation Law with Smooth Initial Data , 2021, SIAM J. Math. Anal..

[21]  Yin Huicheng,et al.  The shock formation and optimal regularities of the resulting shock curves for 1D scalar conservation laws , 2021, Nonlinearity.

[22]  Huali Zhang Low regularity solutions of two-dimensional compressible Euler equations with dynamic vorticity , 2020, 2012.01060.

[23]  Sameer Iyer,et al.  Formation of Unstable Shocks for 2D Isentropic Compressible Euler , 2020, Communications in Mathematical Physics.

[24]  S. Shkoller,et al.  Shock Formation and Vorticity Creation for 3d Euler , 2020, Communications on Pure and Applied Mathematics.

[25]  R. Yang Shock Formation of the Burgers-Hilbert Equation , 2020, SIAM J. Math. Anal..

[26]  Xinliang An,et al.  Low regularity ill-posedness for elastic waves driven by shock formation , 2020, American Journal of Mathematics.

[27]  T. Oliynyk,et al.  Stabilizing Relativistic Fluids on Spacetimes with Non-Accelerated Expansion , 2020, Communications in Mathematical Physics.

[28]  S. Shkoller,et al.  Formation of Point Shocks for 3D Compressible Euler , 2019, Communications on Pure and Applied Mathematics.

[29]  L. Abbrescia,et al.  Geometric analysis of 1+1 dimensional quasilinear wave equations. , 2019, 1912.04692.

[30]  Jared Speck,et al.  Rough sound waves in 3D compressible Euler flow with vorticity , 2019, Selecta Mathematica.

[31]  S. Shkoller,et al.  Formation of Shocks for 2D Isentropic Compressible Euler , 2019, Communications on Pure and Applied Mathematics.

[32]  N. Athanasiou,et al.  Formation of singularities for the relativistic Euler equations , 2019, Journal of Differential Equations.

[33]  L. Abbrescia,et al.  GLOBAL NEARLY-PLANE-SYMMETRIC SOLUTIONS TO THE MEMBRANE EQUATION , 2019, Forum of Mathematics, Pi.

[34]  Jared Speck,et al.  The Relativistic Euler Equations: Remarkable Null Structures and Regularity Properties , 2018, Annales Henri Poincaré.

[35]  S. Ibrahim,et al.  On singularity formation for the two-dimensional unsteady Prandtl system around the axis , 2018, Journal of the European Mathematical Society (Print).

[36]  Shuang Miao,et al.  On the Formation of Shock for Quasilinear Wave Equations with Weak Intensity Pulse , 2018 .

[37]  N. Masmoudi,et al.  Singularity formation for Burgers' equation with transverse viscosity , 2018, Annales scientifiques de l'École Normale Supérieure.

[38]  H. Reall,et al.  Predictability of Subluminal and Superluminal Wave Equations , 2018, Communications in Mathematical Physics.

[39]  Jared Speck Multidimensional nonlinear geometric optics for transport operators with applications to stable shock formation , 2017, Pure and Applied Analysis.

[40]  D. Christodoulou The Shock Development Problem , 2017, 1705.00828.

[41]  Jared Speck Shock Formation for 2D Quasilinear Wave Systems Featuring Multiple Speeds: Blowup for the Fastest Wave, with Non-trivial Interactions up to the Singularity , 2017, 1701.06728.

[42]  Jared Speck A New Formulation of the 3D Compressible Euler Equations with Dynamic Entropy: Remarkable Null Structures and Regularity Properties , 2017, Archive for Rational Mechanics and Analysis.

[43]  Jared Speck,et al.  The hidden null structure of the compressible Euler equations and a prelude to applications , 2016, Journal of Hyperbolic Differential Equations.

[44]  Jared Speck,et al.  Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity , 2016, Inventiones mathematicae.

[45]  Jared Speck,et al.  Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves , 2016, 1601.01303.

[46]  T. Oliynyk Future Stability of the FLRW Fluid Solutions in the Presence of a Positive Cosmological Constant , 2016, Communications in Mathematical Physics.

[47]  D. Christodoulou,et al.  On the formation of shocks of electromagnetic plane waves in non-linear crystals , 2015, 1505.04101.

[48]  T. Oliynyk Future Stability of the FLRW Fluid Solutions in the Presence of a Positive Cosmological Constant , 2015, 1505.00857.

[49]  D. Christodoulou,et al.  Shock Development in Spherical Symmetry , 2015, 1501.04235.

[50]  Shuang Miao,et al.  On the formation of shocks for quasilinear wave equations , 2014, 1412.3058.

[51]  Qian Wang,et al.  A Geometric Approach for Sharp Local Well-Posedness of Quasilinear Wave Equations , 2014, 1408.3780.

[52]  I. Rodnianski,et al.  The nonlinear future stability of the FLRW family of solutions to the irrotational Euler–Einstein system with a positive cosmological constant , 2013 .

[53]  Demetrios Christodoulou,et al.  Compressible flow and Euler's equations , 2012, 1212.2867.

[54]  Jared Speck The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant , 2011, 1102.1501.

[55]  Jared Speck The Non-relativistic Limit of the Euler Nordström System with Cosmological Constant , 2008, 0810.2369.

[56]  A. Rendall,et al.  Shock Waves in Plane Symmetric Spacetimes , 2008, 0806.1597.

[57]  Jared Speck Well-Posedness for the Euler-Nordstrom System with Cosmological Constant , 2008, 0802.2090.

[58]  Demetrios Christodoulou,et al.  The Euler Equations of Compressible Fluid Flow , 2007 .

[59]  D. Christodoulou The Formation of Shocks in 3-Dimensional Fluids , 2007 .

[60]  S. Klainerman,et al.  ON THE RADIUS OF INJECTIVITY OF NULL HYPERSURFACES. , 2006, math/0603010.

[61]  A. Bernal,et al.  Further Results on the Smoothability of Cauchy Hypersurfaces and Cauchy Time Functions , 2005, gr-qc/0512095.

[62]  Hart F. Smith,et al.  Sharp local well-posedness results for the nonlinear wave equation , 2005 .

[63]  S. Klainerman,et al.  The causal structure of microlocalized rough Einstein metrics , 2005 .

[64]  S. Klainerman,et al.  A geometric approach to the Littlewood–Paley theory , 2003, math/0309463.

[65]  S. Klainerman,et al.  Causal geometry of Einstein-Vacuum spacetimes with finite curvature flux , 2003, math/0308123.

[66]  S. Klainerman,et al.  Improved local well-posedness for quasilinear wave equations in dimension three , 2003 .

[67]  Chen Li-ming Formation and construction of shock for p -system , 2001 .

[68]  Serge Alinhac,et al.  The null condition for quasilinear wave equations in two space dimensions I , 2001 .

[69]  D. Christodoulou The Action Principle and Partial Differential Equations , 1999 .

[70]  S. Alinhac Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II , 1999 .

[71]  S. Alinhac Blowup of small data solutions for a quasilinear wave equation in two space dimensions. , 1999, math/9901146.

[72]  Yan Guo,et al.  Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics , 1998, math/9807136.

[73]  S. Klainerman,et al.  The Global Nonlinear Stability of the Minkowski Space. , 1994 .

[74]  Jeffrey Rauch,et al.  BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one , 1986 .

[75]  Thomas C. Sideris,et al.  Formation of singularities in three-dimensional compressible fluids , 1985 .

[76]  Jerrold E. Marsden,et al.  Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .

[77]  Fritz John,et al.  Formation of singularities in one‐dimensional nonlinear wave propagation , 1974 .

[78]  R. Geroch,et al.  The domain of dependence , 1970 .

[79]  Peter D. Lax,et al.  Development of Singularities of Solutions of Nonlinear Hyperbolic Partial Differential Equations , 1964 .

[80]  A. H. Taub,et al.  Relativistic Rankine-Hugoniot Equations , 1948 .

[81]  D.,et al.  The global nonlinear stability of the Minkowski space , 2018 .

[82]  Long Time Behaviour of Solutions to Nonlinear Wave Equations , 2010 .

[83]  Constantine M. Dafermos,et al.  Dafermos Hyperbolic Conservation Laws in Continuum Physics , 2008 .

[84]  Jared Speck On the questions of local and global well-posedness for the hyperbolic PDEs occurring in some relativistic theories of gravity and electromagnetism , 2008 .

[85]  S. Alinhac A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations , 2002 .

[86]  S. Klainerman,et al.  Rough solutions of the Einstein vacuum equations , 2005 .

[87]  Hans Lindblad Counterexamples to local existence for quasilinear wave equations , 1998 .

[88]  Marie-Pierre Lebaud Description de la formation d'un choc dans le p-système , 1994 .

[89]  S. Alinhac Unicité d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels , 1989 .

[90]  S. Alinhac,et al.  Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .

[91]  A. Majda,et al.  The existence of multidimensional shock fronts , 1983 .

[92]  B. Riemann über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .