Fast algorithms for Quadrature by Expansion I: Globally valid expansions
暂无分享,去创建一个
[1] Leslie Greengard,et al. On the efficient representation of the half-space impedance Green’s function for the Helmholtz equation , 2011, 1109.6708.
[2] Anna-Karin Tornberg,et al. Estimation of quadrature errors in layer potential evaluation using quadrature by expansion , 2016, 1603.08366.
[3] R. Kress,et al. Integral equation methods in scattering theory , 1983 .
[4] Peter Werner,et al. Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .
[5] Anna-Karin Tornberg,et al. Error estimation for quadrature by expansion in layer potential evaluation , 2017, Adv. Comput. Math..
[6] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[7] Charles L. Epstein,et al. On the Convergence of Local Expansions of Layer Potentials , 2012, SIAM J. Numer. Anal..
[8] Per-Gunnar Martinsson,et al. High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane , 2014, Adv. Comput. Math..
[9] Leslie Greengard,et al. Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..
[10] J. CARRIERt,et al. A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .
[11] Seppo Järvenpää,et al. Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra , 2003 .
[12] R. Kanwal. Linear Integral Equations , 1925, Nature.
[13] E. Nyström. Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .
[14] Norman Yarvin,et al. Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..
[15] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[16] P. Martinsson,et al. High-order accurate Nystrom discretization of integral equations with weakly singular kernels on smooth curves in the plane , 2011, 1112.6262.
[17] V. Rokhlin. Rapid Solution of Integral Equations of Scattering Theory , 1990 .
[18] Leslie Greengard,et al. Fast algorithms for volume integrals in potential theory , 2000 .
[19] Alex H. Barnett,et al. Evaluation of Layer Potentials Close to the Boundary for Laplace and Helmholtz Problems on Analytic Planar Domains , 2013, SIAM J. Sci. Comput..
[20] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[21] Johan Helsing. A Fast and Stable Solver for Singular Integral Equations on Piecewise Smooth Curves , 2011, SIAM J. Sci. Comput..
[22] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[23] D. Zorin,et al. Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion , 2016, 1612.00977.
[24] L. Greengard,et al. Accelerating fast multipole methods for the Helmholtz equation at low frequencies , 1998 .
[25] James Bremer,et al. A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..
[26] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .