Personalised Information Retrieval: survey and classification

Information Retrieval (IR) systems assist users in finding information from the myriad of information resources available on the Web. A traditional characteristic of IR systems is that if different users submit the same query, the system would yield the same list of results, regardless of the user. Personalised Information Retrieval (PIR) systems take a step further to better satisfy the user’s specific information needs by providing search results that are not only of relevance to the query but are also of particular relevance to the user who submitted the query. PIR has thereby attracted increasing research and commercial attention as information portals aim at achieving user loyalty by improving their performance in terms of effectiveness and user satisfaction. In order to provide a personalised service, a PIR system maintains information about the users and the history of their interactions with the system. This information is then used to adapt the users’ queries or the results so that information that is more relevant to the users is retrieved and presented. This survey paper features a critical review of PIR systems, with a focus on personalised search. The survey provides an insight into the stages involved in building and evaluating PIR systems, namely: information gathering, information representation, personalisation execution, and system evaluation. Moreover, the survey provides an analysis of PIR systems with respect to the scope of personalisation addressed. The survey proposes a classification of PIR systems into three scopes: individualised systems, community-based systems, and aggregate-level systems. Based on the conducted survey, the paper concludes by highlighting challenges and future research directions in the field of PIR.

[1]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[2]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[3]  Yi Zhang,et al.  Efficient bayesian hierarchical user modeling for recommendation system , 2007, SIGIR.

[4]  Milad Shokouhi,et al.  Query Expansion Using External Evidence , 2009, ECIR.

[5]  Carlo Strapparava,et al.  Sense-Based User Modelling for Web Sites , 2000, AH.

[6]  Michael J. Pazzani,et al.  Adaptive News Access , 2007, The Adaptive Web.

[7]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[8]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.

[9]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[10]  Victor Manuel Garcia-Barrios,et al.  Personalized Systems Need Adaptable Privacy Statements! How to Make Privacy-related Legal Aspects Usable and Retraceable , 2009, 2009 Second International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies, and Services.

[11]  Donna K. Harman,et al.  Relevance Feedback and Other Query Modification Techniques , 1992, Information retrieval (Boston).

[12]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[13]  Fabrizio Silvestri,et al.  Mining Query Logs: Turning Search Usage Data into Knowledge , 2010, Found. Trends Inf. Retr..

[14]  Xiaojie Yuan,et al.  Evaluating the Effectiveness of Personalized Web Search , 2009, IEEE Transactions on Knowledge and Data Engineering.

[15]  W. Bruce Croft,et al.  TREC and Tipster Experiments with Inquery , 1995, Inf. Process. Manag..

[16]  Akrivi Katifori,et al.  Creating an Ontology for the User Profile: Method and Applications , 2007, RCIS.

[17]  Alfred Kobsa,et al.  Privacy-Enhanced Web Personalization , 2007, The Adaptive Web.

[18]  Peter Brusilovsky,et al.  Preface to Special Issue on User Modeling for Web Information Retrieval , 2004, User Modeling and User-Adapted Interaction.

[19]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[20]  James Mayfield,et al.  Comparing cross-language query expansion techniques by degrading translation resources , 2002, SIGIR '02.

[21]  Barry Smyth,et al.  Anonymous personalization in collaborative web search , 2006, Information Retrieval.

[22]  Kristian J. Hammond,et al.  User interactions with everyday applications as context for just-in-time information access , 2000, IUI '00.

[23]  J. Jacko,et al.  The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications , 2002 .

[24]  Owen Conlan,et al.  Metadata Driven Approaches to Facilitate Adaptivity in Personalized eLearning Systems , 2003 .

[25]  Ian Witten,et al.  Data Mining , 2000 .

[26]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[27]  Judit Bar-Ilan,et al.  Handbook of Research on Web Log Analysis , 2009 .

[28]  Fernando Diaz,et al.  Adaptation of offline vertical selection predictions in the presence of user feedback , 2009, SIGIR.

[29]  Vincent P. Wade,et al.  A proposal for the evaluation of adaptive content retrieval, modification and delivery , 2011, PMHR '11.

[30]  Peter Brusilovsky,et al.  Adaptive and Intelligent Web-based Educational Systems , 2003, Int. J. Artif. Intell. Educ..

[31]  Nandish V. Patel Adaptive Evolutionary Information Systems , 2002 .

[32]  Amanda Spink,et al.  Handbook of Research on Web Log Analysis , 2008 .

[33]  Joemon M. Jose,et al.  A System for Adaptive Information Retrieval , 2006, AH.

[34]  Mary Beth Rosson,et al.  Paradox of the active user , 1987 .

[35]  Vamshi Ambati Using Monolingual Clickthrough Data to Build Cross-lingual Search Systems , 2006 .

[36]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[37]  Christoph Meinel,et al.  Web Search Personalization Via Social Bookmarking and Tagging , 2007, ISWC/ASWC.

[38]  Efthimis N. Efthimiadis,et al.  Interactive query expansion: A user-based evaluation in a relevance feedback environment , 2000, J. Am. Soc. Inf. Sci..

[39]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.

[40]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[41]  Ellen M. Voorhees,et al.  On the number of terms used in automatic query expansion , 2009, Information Retrieval.

[42]  Sreenivas Gollapudi,et al.  An axiomatic approach for result diversification , 2009, WWW '09.

[43]  Mark Magennis,et al.  The potential and actual effectiveness of interactive query expansion , 1997, SIGIR '97.

[44]  Kenneth Ward Church,et al.  Entropy of search logs: how hard is search? with personalization? with backoff? , 2008, WSDM '08.

[45]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[46]  Drakoulis Martakos,et al.  Creating adaptive web sites using personalization techniques: a unified, integrated approach and the role of evaluation , 2003 .

[47]  Peter Brusilovsky,et al.  Adaptive Hypermedia , 2001, User Modeling and User-Adapted Interaction.

[48]  Jim Holder,et al.  User interfaces , 1985, ALET.

[49]  Sonia Livingstone,et al.  Taking risky opportunities in youthful content creation: teenagers' use of social networking sites for intimacy, privacy and self-expression , 2008, New Media Soc..

[50]  Ryen W. White,et al.  The Use of Implicit Evidence for Relevance Feedback in Web Retrieval , 2002, ECIR.

[51]  Peter Brusilovsky,et al.  Open Corpus Adaptive Educational Hypermedia , 2007, The Adaptive Web.

[52]  Susan T. Dumais,et al.  Learning user interaction models for predicting web search result preferences , 2006, SIGIR.

[53]  Amanda Spink,et al.  An analysis of Web searching by European AlltheWeb.com users , 2005, Inf. Process. Manag..

[54]  Wei-Ying Ma,et al.  Query Expansion by Mining User Logs , 2003, IEEE Trans. Knowl. Data Eng..

[55]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[56]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[57]  Stephen E. Robertson,et al.  Selecting good expansion terms for pseudo-relevance feedback , 2008, SIGIR '08.

[58]  Georgia Koutrika,et al.  Rule-based query personalization in digital libraries , 2004, International Journal on Digital Libraries.

[59]  Wei Gao,et al.  Cross-lingual query suggestion using query logs of different languages , 2007, SIGIR.

[60]  Elaine Rich Users are individuals: individualizing user models , 1999, Int. J. Hum. Comput. Stud..

[61]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[62]  Djoerd Hiemstra,et al.  WikiTranslate: Query Translation for Cross-lingual Information Retrieval using only Wikipedia , 2008, CLEF.

[63]  Xu Sun,et al.  Learning Phrase-Based Spelling Error Models from Clickthrough Data , 2010, ACL.

[64]  Ingmar Weber,et al.  Efficient interactive query expansion with complete search , 2007, CIKM '07.

[65]  Natalia Stash,et al.  AHA! The adaptive hypermedia architecture , 2003, HYPERTEXT '03.

[66]  Meredith Ringel Morris,et al.  Discovering and using groups to improve personalized search , 2009, WSDM '09.

[67]  Vincent P. Wade,et al.  Multi-model, Metadata Driven Approach to Adaptive Hypermedia Services for Personalized eLearning , 2002, AH.

[68]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[69]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[70]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[71]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[72]  Susan T. Dumais,et al.  To personalize or not to personalize: modeling queries with variation in user intent , 2008, SIGIR '08.

[73]  Katia P. Sycara,et al.  WebMate: a personal agent for browsing and searching , 1998, AGENTS '98.

[74]  Amanda Spink,et al.  Issues of context in information retrieval (IR): an introduction to the special issue , 2002, Inf. Process. Manag..

[75]  Fernando Diaz,et al.  A Methodology for Evaluating Aggregated Search Results , 2011, ECIR.

[76]  Douglas W. Oard,et al.  Cross-language Information Retrieval , 2021, ArXiv.

[77]  A. Jameson Adaptive interfaces and agents , 2002 .

[78]  Alexander Maedche,et al.  Ontology-Based User Modeling for Knowledge Management Systems , 2003, User Modeling.

[79]  Douglas W. Oard,et al.  A comparative study of query and document translation for cross-language information retrieval , 1998, AMTA.

[80]  Dan Frankowski,et al.  Collaborative Filtering Recommender Systems , 2007, The Adaptive Web.

[81]  Andreas Nürnberger,et al.  Adaptive Support for Cross-Language Text Retrieval , 2006, AH.

[82]  Clement T. Yu,et al.  Personalized Web search for improving retrieval effectiveness , 2004, IEEE Transactions on Knowledge and Data Engineering.

[83]  Dong Zhou,et al.  Identifying Common User Behaviour in Multilingual Search Logs , 2009, CLEF.

[84]  Ke Wang,et al.  Privacy-enhancing personalized web search , 2007, WWW '07.

[85]  Feng Qiu,et al.  Automatic identification of user interest for personalized search , 2006, WWW '06.

[86]  Vincent P. Wade,et al.  Dynamic hypertext generation for reusing open corpus content , 2009, HT '09.

[87]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[88]  Theodora Tsikrika Multilingual Information Access Evaluation II -- Multimedia Experiments, Proceedings of the 10th Workshop of the Cross-Language Evaluation Forum (CLEF 2009) , 2010 .

[89]  Hui Zhang,et al.  Construction of Ontology-Based User Model for Web Personalization , 2007, User Modeling.

[90]  Joemon M. Jose,et al.  Personalizing Web Search with Folksonomy-Based User and Document Profiles , 2010, ECIR.

[91]  Alessandro Micarelli,et al.  Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System , 2004, User Modeling and User-Adapted Interaction.

[92]  GuidaGiovanni,et al.  User modeling in intelligent information retrieval , 1987 .

[93]  Gareth J. F. Jones,et al.  Classifying and filtering blind feedback terms to improve information retrieval effectiveness , 2010, RIAO.

[94]  Aude Dufresne,et al.  Adaptive Navigational Tools for Educational Hupermedia , 1992, ICCAL.

[95]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[96]  Vincent P. Wade,et al.  Personalisation in the wild: providing personalisation across semantic, social and open-web resources , 2011, HT '11.

[97]  Fabio Gasparetti,et al.  Personalized Search on the World Wide Web , 2007, The Adaptive Web.

[98]  Judy Kay,et al.  The justified user model: A viewable explained user model , 2003 .

[99]  Elaine Rich,et al.  Users are Individuals: Individualizing User Models , 1999, Int. J. Man Mach. Stud..

[100]  Eugene Volokh,et al.  Personalization and privacy , 2000, CACM.

[101]  Vincent P. Wade,et al.  Evaluation of APeLS - An Adaptive eLearning Service Based on the Multi-model, Metadata-Driven Approach , 2004, AH.

[102]  Peter Brusilovsky,et al.  Layered evaluation of adaptive learning systems , 2004 .

[103]  Douglas W. Oard,et al.  The State of the Art in Text Filtering , 1997, User Modeling and User-Adapted Interaction.

[104]  Alexander Pretschner,et al.  Ontology based personalized search , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[105]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[106]  Alessandro Acquisti,et al.  Imagined Communities: Awareness, Information Sharing, and Privacy on the Facebook , 2006, Privacy Enhancing Technologies.

[107]  Najafi Azadeh,et al.  REAL LIFE, REAL USERS AND REAL NEEDS: A STUDY AND ANALYSIS OF USER QUERIES ON THE WEB , 2008 .

[108]  Douglas W. Oard,et al.  Multilingual Information Access , 2010 .

[109]  B. Thomas,et al.  Usability Evaluation In Industry , 1996 .

[110]  Nicola Zannone,et al.  Towards the development of privacy-aware systems , 2009, Inf. Softw. Technol..

[111]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[112]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[113]  Kent L. Norman,et al.  Questionnaire Administration Via the WWW: A Validation & Reliability Study for a User Satisfaction Questionnaire , 1997, WebNet.

[114]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[115]  Ian Ruthven,et al.  Re-examining the potential effectiveness of interactive query expansion , 2003, SIGIR.

[116]  Cliff Lampe,et al.  Changes in use and perception of facebook , 2008, CSCW.

[117]  Wolfgang Nejdl,et al.  Current Approaches to Search Result Diversification , 2009, LivingWeb@ISWC.

[118]  Simon A. Dobson,et al.  Ontology-based models in pervasive computing systems , 2007, The Knowledge Engineering Review.

[119]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[120]  Alessandro Micarelli,et al.  User Profiles for Personalized Information Access , 2007, The Adaptive Web.

[121]  Hugh E. Williams,et al.  Query expansion using associated queries , 2003, CIKM '03.

[122]  Sofia Stamou,et al.  Search personalization through query and page topical analysis , 2009, User Modeling and User-Adapted Interaction.

[123]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[124]  Wendy Hall,et al.  An Evaluation of Adapted Hypermedia Techniques Using Static User Modelling , 1998 .

[125]  John Millar Carroll Interfacing Thought: Cognitive Aspects of Human-Computer Interaction , 2003 .

[126]  Javed Mostafa,et al.  An experiment in building profiles in information filtering: the role of context of user relevance feedback , 2002, Inf. Process. Manag..

[127]  Jianfeng Gao,et al.  Extending query translation to cross-language query expansion with markov chain models , 2007, CIKM '07.

[128]  Vincent P. Wade Challenges for the Multi-dimensional Personalised Web , 2009, UMAP.

[129]  Claudio Carpineto,et al.  Query Difficulty, Robustness, and Selective Application of Query Expansion , 2004, ECIR.

[130]  Peretz Shoval,et al.  Information Filtering: Overview of Issues, Research and Systems , 2001, User Modeling and User-Adapted Interaction.

[131]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[132]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[133]  Marti A. Hearst Chapter 2 of the second edition of Modern Information Retrieval Renamed Modern Information Retrieval : The Concepts and Technology behind Search , 2011 .

[134]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[135]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[136]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[137]  Marti A. Hearst Search User Interfaces , 2009 .

[138]  Gregory Grefenstette,et al.  Cross-Language Information Retrieval , 1998, The Springer International Series on Information Retrieval.

[139]  Grigorios Tsoumakas,et al.  An adaptive personalized news dissemination system , 2009, Journal of Intelligent Information Systems.

[140]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[141]  Jean-David Ruvini Adapting to the User's Internet Search Strategy , 2003, User Modeling.

[142]  Giovanni Guida,et al.  User modeling in intelligent information retrieval , 1987, Inf. Process. Manag..

[143]  Berthier A. Ribeiro-Neto,et al.  Bayesian belief networks for IR , 2003, Int. J. Approx. Reason..

[144]  Fabio Crestani,et al.  Tag data and personalized information retrieval , 2008, SSM '08.

[145]  Peter Brusilovsky,et al.  User Models for Adaptive Hypermedia and Adaptive Educational Systems , 2007, The Adaptive Web.

[146]  Dong Zhou,et al.  Improving search via personalized query expansion using social media , 2012, Information Retrieval.