Robust extended Kalman filtering

Linearization errors inherent in the specification of an extended Kalman filter (EKF) can severely degrade its performance. This correspondence presents a new approach to the robust design of a discrete-time EKF by application of the robust linear design methods based on the H/sub /spl infin// norm minimization criterion. The results of simulations are presented to demonstrate an advantage for signal demodulation and nonlinear equalization applications.

[1]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  D. Bernstein,et al.  Steady-state kalman filtering with an H∞ error bound , 1989, 1989 American Control Conference.

[3]  Peter H. Bauer,et al.  Comments on "Stability and absence of overflow oscillations for 2-D discrete-time systems" , 1998, IEEE Trans. Signal Process..

[4]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[5]  Andrew P. Sage,et al.  Estimation theory with applications to communications and control , 1979 .

[6]  David J. Hill,et al.  Stability and absence of overflow oscillations for 2-D discrete-time systems , 1996, IEEE Trans. Signal Process..

[7]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[8]  Langford B. White,et al.  THE EXTENDED H- FILTER - A ROBUST EKF' , 1994 .

[9]  Pablo A. Iglesias,et al.  State-space solution of the discrete-time minimum entropy control problem via separation , 1993, IEEE Trans. Autom. Control..

[10]  D. Bernstein,et al.  Steady-state Kalman filtering with an H ∞ error bound , 1989 .

[11]  Uri Shaked,et al.  H∞ nonlinear filtering of discrete-time processes , 1995, IEEE Trans. Signal Process..

[12]  Pramod P. Khargonekar,et al.  FILTERING AND SMOOTHING IN AN H" SETTING , 1991 .

[13]  Lihua Xie,et al.  H∞ estimation for uncertain systems , 1992 .

[14]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[15]  Spyros G. Tzafestas,et al.  Two-dimensional digital filters without overflow oscillations and instability due to finite word length , 1992, IEEE Trans. Signal Process..

[16]  Uri Shaked,et al.  A game theory approach to robust discrete-time H∞-estimation , 1994, IEEE Trans. Signal Process..

[17]  Michael Green,et al.  Discrete time H∞ control , 1989 .