β-NaMnO2: a high-performance cathode for sodium-ion batteries.

There is much interest in Na-ion batteries for grid storage because of the lower projected cost compared with Li-ion. Identifying Earth-abundant, low-cost, and safe materials that can function as intercalation cathodes in Na-ion batteries is an important challenge facing the field. Here we investigate such a material, β-NaMnO2, with a different structure from that of NaMnO2 polymorphs and other compounds studied extensively in the past. It exhibits a high capacity (of ca. 190 mA h g(-1) at a rate of C/20), along with a good rate capability (142 mA h g(-1) at a rate of 2C) and a good capacity retention (100 mA h g(-1)after 100 Na extraction/insertion cycles at a rate of 2C). Powder XRD, HRTEM, and (23)Na NMR studies revealed that this compound exhibits a complex structure consisting of intergrown regions of α-NaMnO2 and β-NaMnO2 domains. The collapse of the long-range structure at low Na content is expected to compromise the reversibility of the Na extraction and insertion processes occurring upon charge and discharge of the cathode material, respectively. Yet stable, reproducible, and reversible Na intercalation is observed.

[1]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[2]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[3]  L. Croguennec,et al.  Nature of the stacking faults in orthorhombicLiMnO2 , 1997 .

[4]  J. Pannetier,et al.  Structural and electrochemical properties of the proton / γ-MnO2 system , 1995 .

[5]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[6]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[7]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[8]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[9]  P. Haumesser,et al.  The Structure of Ni ( OH ) 2: From the Ideal Material to the Electrochemically Active One , 1999 .

[10]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[11]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[12]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[13]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[14]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[15]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[16]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[17]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[18]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[19]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[20]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[21]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[22]  P. Bruce,et al.  Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 , 2004 .

[23]  Jeff Dahn,et al.  Structure and electrochemistry of LixMnyNi1−yO2 , 1992 .

[24]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[25]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[26]  C. Delmas,et al.  A new variety of LiMnO2 with a layered structure , 1996 .

[27]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[28]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[29]  H. Ahn,et al.  Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. , 2013, Chemistry.

[30]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[31]  G. Tendeloo,et al.  Multiple Twinning As a Structure Directing Mechanism in Layered Rock-Salt-Type Oxides: NaMnO2 Polymorphism, Redox Potentials, and Magnetism , 2014 .

[32]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[33]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[34]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[35]  P. Novák,et al.  Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials , 1998 .