Cavity-free plasmonic nanolasing enabled by dispersionless stopped light

When light is brought to a standstill, its interaction with gain media increases dramatically due to a singularity in the density of optical states. Concurrently, stopped light engenders an inherent and cavity-free feedback mechanism, similar in effect to the feedback that has been demonstrated and exploited in large-scale disordered media and random lasers. Here we study the spatial, temporal and spectral signatures of lasing in planar gain-enhanced nanoplasmonic structures at near-infrared frequencies and show that the stopped-light feedback mechanism allows for nanolasing without a cavity. We reveal that in the absence of cavity-induced feedback, the subwavelength lasing mode forms dynamically as a phase-locked superposition of quasi dispersion-free waveguide modes. This mechanism proves remarkably robust against interface roughness and offers a new route towards nanolasing, the experimental realization of ultra-thin surface emitting lasers, and cavity-free active quantum plasmonics.

[1]  O. Hess,et al.  Metamaterials with Quantum Gain , 2013, Science.

[2]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[3]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[4]  K. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[5]  Shun-Hui Yang,et al.  Localization in silicon nanophotonic slow-light waveguides , 2008 .

[6]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[7]  Daniel J Gauthier,et al.  Controlling the Velocity of Light Pulses , 2009, Science.

[8]  M Ibanescu,et al.  Anomalous dispersion relations by symmetry breaking in axially uniform waveguides. , 2004, Physical review letters.

[9]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[10]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[11]  Cun-Zheng Ning,et al.  Metallic subwavelength-cavity semiconductor nanolasers , 2012, Light: Science & Applications.

[12]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[13]  Brandon Redding,et al.  Physics and applications of random lasers , 2014, 2014 The European Conference on Optical Communication (ECOC).

[14]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[15]  Shanhui Fan,et al.  Modal analysis and coupling in metal-insulator-metal waveguides , 2008, 0809.2850.

[16]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[17]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[18]  Steven G. Johnson,et al.  Microcavity confinement based on an anomalous zero group-velocity waveguide mode. , 2005, Optics letters.

[19]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[20]  D. Bimberg,et al.  Metal-cavity surface-emitting microlaser at room temperature , 2010 .

[21]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[22]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[23]  Ortwin Hess,et al.  Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach. , 2012, ACS nano.

[24]  Ortwin Hess,et al.  Completely stopped and dispersionless light in plasmonic waveguides. , 2014, Physical review letters.

[25]  Jacob B. Khurgin,et al.  Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes , 2014, Nature Photonics.

[26]  K. Tsakmakidis,et al.  Theory of light amplification in active fishnet metamaterials. , 2011, Physical review letters.

[27]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[28]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[29]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[30]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[31]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[32]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .

[33]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[34]  Min-Suk Kwon,et al.  Simple and fast numerical analysis of multilayer waveguide modes , 2004 .

[35]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[36]  Shu-Wei Chang,et al.  Fundamental Formulation for Plasmonic Nanolasers , 2009, IEEE Journal of Quantum Electronics.

[37]  Hui Cao,et al.  Lasing in random media , 2003 .

[38]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[39]  R. Kraus,et al.  Air Force Office of Scientific Research , 2015 .

[40]  M. Soljačić,et al.  Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light. , 2009, Physical review letters.

[41]  C. Z. Ning,et al.  Semiconductor nanolasers , 2010 .

[42]  E. Economou Surface Plasmons in Thin Films , 1969 .

[43]  K. Vahala Optical microcavities , 2003, Nature.

[44]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[45]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.