Output feedback stabilization of nonlinear networked control systems with non-decreasing nonlinearities: a matrix inequalities approach

This paper addresses an output feedback stabilization problem of a class of nonlinear systems with nonlinearities satisfying the non-decreasing property via limited-capacity communication channels. Using ideas from absolute stability theory, we propose an algorithm that consists of an observer and a coder/decoder-controller pair. Sufficient conditions for the stabilization problem are provided and presented in terms of linear matrix inequalities. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  I. Petersen,et al.  Recursive state estimation for uncertain systems with an integral quadratic constraint , 1995, IEEE Trans. Autom. Control..

[2]  Charles M. Rader,et al.  Digital processing of signals , 1983 .

[3]  Daniel Liberzon,et al.  On stabilization of linear systems with limited information , 2003, IEEE Trans. Autom. Control..

[4]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[5]  Petar V. Kokotovic,et al.  Circle and Popov criteria as tools for nonlinear feedback design, , 2003, Autom..

[6]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[7]  I. Petersen,et al.  Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[8]  R. Curry Estimation and Control with Quantized Measurements , 1970 .

[9]  A.V. Savkin,et al.  Detectability and Output Feedback Stabilizability of Nonlinear Networked Control Systems , 2005, IEEE Transactions on Automatic Control.

[10]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[11]  I. Petersen,et al.  Minimax optimal control of uncertain systems with structured uncertainty , 1995 .

[12]  Andrey V. Savkin,et al.  Multirate Stabilization of Linear Multiple Sensor Systems via Limited Capacity Communication Channels , 2005, SIAM J. Control. Optim..

[13]  Petar V. Kokotovic,et al.  Observer-based control of systems with slope-restricted nonlinearities , 2001, IEEE Trans. Autom. Control..

[14]  Daniel J. Stilwell,et al.  Platoons of underwater vehicles , 2000 .

[15]  K. Narendra,et al.  Frequency Domain Criteria for Absolute Stability , 1973 .

[16]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[17]  Andrey V. Savkin,et al.  Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control , 2005, Autom..

[18]  Petar V. Kokotovic,et al.  Nonlinear observers: a circle criterion design and robustness analysis , 2001, Autom..

[19]  Alberto Isidori,et al.  Stabilizability by state feedback implies stabilizability by encoded state feedback , 2004, Syst. Control. Lett..

[20]  C. K. Yuen,et al.  Introduction to Digital Filtering , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[22]  V. Yakubovich Dichotomy and absolute stability of nonlinear systems with periodically nonstationary linear part , 1988 .

[23]  Ian R. Petersen,et al.  Set-valued state estimation via a limited capacity communication channel , 2003, IEEE Trans. Autom. Control..